

#### AQ061-3-M-ODL-TSF Time Series Analysis and Forecasting

### **Topic 4 – Box Jenkins Methodology (Part I)**

#### **TOPIC LEARNING OUTCOMES**



At the end of this topic, you should be able to:

- 1. Use Box Jenkins methodology to produce accurate forecasts based on a description of historical patterns in the data.
- 2. Solve the model using computer software and interpret the results.



#### **Contents & Structure**

- Autoregressive (AR)
- Moving Average (MA)
- Autoregressive Moving Average (ARMA)
- Autoregressive Integrated Moving Average (ARIMA)
- Building ARIMA Models
- Seasonal Auto Regressive Integrated Moving Average (SARIMA)
- Building SARIMA Models



#### **Recap From Last Lesson**

• Questions to ask to trigger last week's key learning points

#### Introduction



- The Box-Jenkins methodology refers to a set of procedures for identifying and estimating time series models within the class of AutoRegressive Integrated Moving Average (ARIMA) models.
- This models rely heavily on the autocorrelation pattern in the data.





### **Properties of Stationary Series**

![](_page_6_Picture_1.jpeg)

Time series are stationary if they do not have trend or seasonal effects

1.  $E(Y_t) = \mu$ 2.  $Var(Y_t) = \sigma^2$ 3.  $Cov(Y_t, Y_{t-k}) = \gamma_k$ 4.  $\rho_k = \frac{\gamma_k}{\sigma^2}$ 

In other words, it has **constant mean and variance**, and covariance (and also correlation) between  $Y_t$  and  $Y_{t-1}$  is the same for all t.

![](_page_6_Figure_5.jpeg)

![](_page_6_Figure_6.jpeg)

![](_page_6_Figure_7.jpeg)

#### **Behaviors of ACF**

![](_page_7_Picture_1.jpeg)

 The ACF can cut off. A spike at lag k exists in the ACF if r<sub>k</sub> is statistically large. The ACF cuts off after lag k if there are no spikes at lags greater than k in the ACF.

![](_page_7_Figure_3.jpeg)

#### **Behaviors of ACF**

![](_page_8_Picture_1.jpeg)

2. The ACF is said to die down if this function does not cut off but rather decreases in a 'steady fashion'.

![](_page_8_Figure_3.jpeg)

#### **Behaviors of ACF**

![](_page_9_Picture_1.jpeg)

#### 3. The ACF can die down fairly quickly or extremely slowly.

![](_page_9_Figure_3.jpeg)

#### **Backshift Operator**

![](_page_10_Picture_1.jpeg)

• Backshift operator is defined as

$$\mathbf{B}\mathbf{Y}_{t} = \mathbf{Y}_{t-1}$$

- In other words, B operating on  $Y_t$  has the effect of shifting the data back one period.
- It can be extended,

$$\mathbf{B}^{k}\mathbf{Y}_{\mathsf{t}} = \mathbf{Y}_{\mathsf{t}^{-k}}$$

• The operator is convenient for describing the process of differencing, i.e.  $(1 - B)^d Y_t$ 

![](_page_11_Picture_0.jpeg)

ARIMA(p,d,q)

![](_page_11_Figure_3.jpeg)

$$\nabla^d = (1 - B)^d$$

 $\delta = \text{constant}$ 

 $Y_t = \text{time series data}$   $\varepsilon_t = \text{white noise/random error}$   $\phi_p(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$  $\theta_q(B) = 1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q$ 

![](_page_12_Picture_0.jpeg)

# Moving Average (MA)

#### Moving Average (MA) Model

• The model

$$y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$

is called non-seasonal moving average model of order q.

- Denote this process as MA(q).
- The process is described completely by a weighted sum of current and lagged random disturbances.
- $\theta_1, \theta_2, \dots, \theta_p$  are unknown parameter.

## Moving Average (MA)

![](_page_13_Picture_1.jpeg)

#### MA(1) Model

$$y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1}$$

![](_page_13_Figure_4.jpeg)

# Moving Average (MA)

![](_page_14_Picture_1.jpeg)

#### MA(2) Model

$$y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$$

![](_page_14_Figure_4.jpeg)

![](_page_15_Picture_0.jpeg)

![](_page_15_Picture_1.jpeg)

#### Table below shows the result of ARIMA modeling

|                      | Estimates |
|----------------------|-----------|
| Constant (Mean)      | 6.957     |
| MA Lag 1, $\theta_1$ | 0.765     |
| MA Lag 2, $\theta_2$ | 0.997     |
| Difference           | 1         |

Based on the observation below, <u>forecast the value at period 5</u> if period 4 is the forecast origin assuming  $F_1 = 6.957$ 

| Time     | 1 | 2  | 3  | 4 |
|----------|---|----|----|---|
| Observed | 6 | 15 | 10 | 4 |

![](_page_16_Picture_0.jpeg)

## **Autoregressive (AR)**

#### Non-seasonal Autoregressive (AR) Model

• The model

$$y_{t} = \delta + \phi_{1} y_{t-1} + \phi_{2} y_{t-2} + \dots + \phi_{p} y_{t-p} + \varepsilon_{t}$$

is called non-seasonal autoregressive model of order p.

- Denote this process as AR(p)
- The process depends upon a weighted sum of its past values and a random disturbance in the current period .
- $\phi_1, \phi_2, \dots, \phi_p$  are unknown parameter

![](_page_17_Picture_0.jpeg)

### **Autoregressive (AR)**

### AR(1) Model

$$y_t = \phi_1 y_{t-1} + \delta + \varepsilon_t$$

![](_page_17_Figure_4.jpeg)

### **Autoregressive (AR)**

![](_page_18_Picture_1.jpeg)

#### AR(2) Model

$$y_t = \phi_1 y_{t-1} + \phi_2 y_{t-2} + \delta + \varepsilon_t$$

![](_page_18_Figure_4.jpeg)

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_1.jpeg)

Analyse the following data and formulate the model equation for the ARIMA model you chosen:

- quakes.dat
- population.csv average growth of population from 1970 to 2017

![](_page_20_Picture_0.jpeg)

### Autoregressive Moving Average (ARMA)

#### Non-seasonal Mixed Autoregressive Moving Average (ARMA) Model

• The model

$$y_t = \delta + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p}$$
$$+ \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$

is called non-seasonal mixed autoregressive – moving average model of order (p,q).

- Denote this process as ARMA(p,q)
- Combine features of both MA and AR processes

![](_page_21_Picture_0.jpeg)

### **Autoregressive Moving Average (ARMA)**

#### • ARMA(1,1) Process

 $y_t = \delta + \phi_1 y_{t-1} + \varepsilon_t + \theta_1 \varepsilon_{t-1}$ 

![](_page_21_Figure_4.jpeg)

![](_page_22_Picture_0.jpeg)

![](_page_22_Picture_1.jpeg)

Formulate the model equation based on the output below:

ARIMA(1,1,1) Coefficients:

|      | ar1    | ma1     |
|------|--------|---------|
|      | 0.7713 | -0.4422 |
| s.e. | 0.1887 | 0.2639  |

```
sigma^2 estimated as 22874248:
log likelihood=-276.07
AIC=558.15 AICc=559.15 BIC=562.14
```

### Autoregressive Integrated Moving Average (ARIMA)

![](_page_23_Picture_1.jpeg)

## ARIMA (p,d,q)

- Models for non-stationary series are called *autoregressive integrated moving average* models and denoted by ARIMA (p,d,q)
  - **p** indicate the order of AR part
  - **d** indicate the amount of differencing
  - **q** indicate the order of MA part
- If the original series is stationary, then d=0 and the ARIMA models reduce to ARMA models

![](_page_24_Picture_0.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_25_Picture_1.jpeg)

#### **Parameter Estimation**

- Once a tentative model has been selected, the parameter for that model must be estimated.
- The parameter in models are estimated by **minimizing the sum of squares of the fitting errors.**

![](_page_26_Picture_1.jpeg)

#### **Parameter Estimation**

 Once the least squares estimates and their standard errors are determined, t values can be constructed and interpreted in the usual way such as

 $t = \frac{\text{Point estimate of each parameter}}{\text{standard error of the point estimate}}$  $t = \frac{\hat{\theta}}{S_{\hat{\theta}}}$ 

![](_page_27_Picture_0.jpeg)

#### **Parameter Estimation**

- Parameters that are judged significantly different from zero are retained in the fitted model (If p-value < 0.05, Reject H<sub>0</sub>).
- Parameters that are not significant are dropped from the model.

Null hypothesis,  $H_0$ :  $\theta = 0$ Alternative hypothesis,  $H_1$ :  $\theta \neq 0$ 

![](_page_28_Picture_0.jpeg)

#### **Diagnostic Checking**

- Check for adequacy of the model.
- Often it is not straightforward to determine a single model that most adequately represents the data generating process, and it is common to estimate several models at the initial stage.
- The model that is finally chosen is the one considered best based on a set of diagnostic checking criteria. These criteria include
  - 1. t-tests for coefficient significance
  - 2. residual analysis
  - 3. model selection criteria

![](_page_29_Picture_1.jpeg)

#### White Noise Process

• In general, we assume the error term,  $\varepsilon_t$  is uncorrelated with anything, with mean 0 and constant variance,  $\sigma^2$ . We called this process as White Noise process.

![](_page_29_Figure_4.jpeg)

![](_page_30_Picture_0.jpeg)

#### **Diagnostic Checking**

• An overall check of model adequacy is provided by a chi-square test based on the Ljung-Box *Q* statistic.

$$Q = n(n+2) \sum_{k=1}^{m} \frac{r_k^2(e)}{n-k}$$

 $r_k(e) = residual autocorrelation at lag k$ 

- n = number of residuals
- k = time lag
- m = number of time lags to be tested

![](_page_31_Picture_1.jpeg)

## **Diagnostic Checking**

- If **p-value is small (< 0.05),** the model is considered **inadequate**.
- Then, the analyst should consider a new or modified model and continue the analysis until a satisfactory model has been determined.

![](_page_32_Picture_0.jpeg)

- Once an adequate model has been found, forecasts for one period or several periods into the future can be made.
- Computer programs that fit ARIMA models generate forecasts and prediction intervals at the analyst's request.
- As more data become available, the same ARIMA model can be used to generate revised forecast from another time origin.
- Good to monitor forecast errors. If the forecast error tend to be consistently positive (under predicting) or negative (over predicting).

![](_page_33_Picture_0.jpeg)

![](_page_33_Picture_1.jpeg)

Split the below data into training (80%) and testing data (20%). Analyse the training data and formulate the model equation for the ARIMA model you chosen:

- sales.dat quarterly sales data (in \$'000) starting 01-01-2007
- USABeerproduction.csv

Then, compute the accuracy of the model in the testing data. Check the residuals and test whether the model you chosen is satisfactory.

#### **Review Questions**

![](_page_34_Picture_1.jpeg)

### Summary / Recap of Main Points

![](_page_35_Picture_1.jpeg)

- 1. Use Box Jenkins methodology to produce accurate forecasts based on a description of historical patterns in the data.
- 2. Solve the model using computer software and interpret the results.

#### What To Expect Next Week

![](_page_36_Picture_1.jpeg)

In Class

#### **Preparation for Class**

• Volatile Models