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Topic 4 – Box Jenkins Methodology 
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TOPIC LEARNING OUTCOMES

At the end of this topic, you should be able to:
1. Use Box Jenkins methodology to produce accurate forecasts based on a 
description of historical patterns in the data.
2. Solve the model using computer software and interpret the results.
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• Autoregressive (AR)
• Moving Average (MA)
• Autoregressive Moving Average (ARMA)
• Autoregressive Integrated Moving Average (ARIMA)
• Building  ARIMA Models
• Seasonal Auto Regressive Integrated Moving Average (SARIMA) 
• Building  SARIMA Models

Contents & Structure
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Recap From Last Lesson

• Questions to ask to trigger last week’s key learning points
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• The Box-Jenkins methodology refers to a set of procedures for 
identifying and estimating time series models within the class of 
AutoRegressive Integrated Moving Average (ARIMA) models.

• This models rely heavily on the autocorrelation pattern in the data.

Introduction
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Building ARIMA Models

Use Model for Forecasting

Diagnostic Checking (Is the model adequate?)

Estimate Parameters in Tentatively Entertained 
Model 

Identify Model to be Tentatively Entertained

Postulate General Class of Models

YES
NO
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Properties of Stationary Series

1. E 𝑌𝑡 = 𝜇
2. Var 𝑌𝑡 = 𝜎2

3. Cov 𝑌𝑡 , 𝑌𝑡−𝑘 = 𝛾𝑘
4. 𝜌𝑘 =

𝛾𝑘

𝜎2

In other words, it has constant mean and 
variance, and covariance (and also 
correlation) between Yt and Yt-1 is the 
same for all t. 

Trend + Seasonal 

Time series are stationary if they do 
not have trend or seasonal effects
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1. The ACF can cut off. A spike at lag k exists in the ACF if rk is statistically 
large. The ACF cuts off after lag k if there are no spikes at lags greater 
than k in the ACF. 

Behaviors of ACF

Cut off after lag 2
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2. The ACF is said to die down if this function does not cut off but rather 
decreases in a ‘steady fashion’. 

Behaviors of ACF

Damped exponential dying down Damped sine-wave dying down Damped exponential dying down 
with oscillation
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3. The ACF can die down fairly quickly or extremely slowly.

Behaviors of ACF

(a) Dying down fairly quickly (stationary)

(b) Dying down extremely slowly (non-stationary)
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• Backshift operator is defined as 
BYt = Yt-1

• In other words, B operating on Yt has the effect of shifting the data back 
one period. 

• It can be extended, 
BkYt = Yt-k

• The operator is convenient for describing the process of differencing, i.e.
(1 – B)d Yt

Backshift Operator
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ARIMA(p,d,q)

Building ARIMA Models

( ) ( )d

p t q tB Y B    = +

∇𝑑= (1 − 𝐵)𝑑

𝛿 = constant
𝑌𝑡 = time series data
𝜀t = white noise/random error
𝜙𝑝(𝐵) = 1 − 𝜙1𝐵 − 𝜙2𝐵

2−. . . −𝜙𝑝𝐵
𝑝

𝜃𝑞 𝐵 = 1 + 𝜃1𝐵 + 𝜃2𝐵
2 +⋯+ 𝜃𝑞𝐵

𝑞

Regular AR(p) Regular MA(q)
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Moving Average (MA) Model
• The model

is called non-seasonal moving average model of order q. 
• Denote this process as MA(q).
• The process is described completely by a weighted sum of current and 

lagged random disturbances.
• are unknown parameter.

Moving Average (MA)

𝑦𝑡 = 𝜇 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯+ 𝜃𝑞𝜀𝑡−𝑞

p ,..., 21
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MA(1) Model

Moving Average (MA)

ACF

Cuts off after lag 1

PACF

Damped exponential dying down

𝑦𝑡 = 𝜇 + 𝜀𝑡 + 𝜃1𝜀𝑡−1
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MA(2) Model

Moving Average (MA)

ACF

Cuts off after lag 2

PACF

Damped exponential dying down 

with oscillation

𝑦𝑡 = 𝜇 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2
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Table below shows the result of ARIMA modeling

Based on the observation below, forecast the value at period 5 if period 4 is 
the forecast origin assuming F1 = 6.957

Example

Estimates 

Constant (Mean) 6.957
MA Lag 1, θ1 0.765
MA Lag 2, θ2 0.997

Difference 1

Time 1 2 3 4

Observed 6 15 10 4
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Non-seasonal Autoregressive (AR) Model
• The model

is called non-seasonal autoregressive model of order p. 
• Denote this process as AR(p)
• The process depends upon a weighted sum of its past values                     

and a random disturbance in the current period    .
• are unknown parameter

Autoregressive (AR)

tptpttt yyyy  +++++= −−− 2211

p ,..., 21
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AR(1) Model

Autoregressive (AR)

ACF

Dies down in a damped 

exponential fashion

PACF

Cuts off after lag 1

ttt yy  ++= −11
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AR(2) Model

Autoregressive (AR)

ACF

Sine waves dying down. 

PACF

Cuts off after lag 2

tttt yyy  +++= −− 2211
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Analyse the following data and formulate the model equation for the 
ARIMA model you chosen: 

• quakes.dat 
• population.csv – average growth of population from 1970 to 2017 

Practical Exercise
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Non-seasonal Mixed Autoregressive Moving Average (ARMA) Model
• The model

is called non-seasonal mixed autoregressive – moving average model of 
order (p,q). 

• Denote this process as ARMA(p,q)
• Combine features of both MA and AR processes

Autoregressive Moving Average (ARMA)

𝑦𝑡 = 𝛿 + 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 +⋯+ 𝜙𝑝𝑦𝑡−𝑝
+𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯+ 𝜃𝑞𝜀𝑡−𝑞
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• ARMA(1,1) Process

Autoregressive Moving Average (ARMA)

ACF

Dies down in a damped 

exponential fashion with 

oscillation

PACF

Dies down in a fashion dominated 

by damped exponential decay

𝑦𝑡 = 𝛿 + 𝜙1𝑦𝑡−1 + 𝜀𝑡 + 𝜃1𝜀𝑡−1
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Formulate the model equation based on the output below: 

ARIMA(1,1,1) 

Coefficients:

ar1      ma1

0.7713  -0.4422

s.e. 0.1887   0.2639

sigma^2 estimated as 22874248:  

log likelihood=-276.07

AIC=558.15   AICc=559.15   BIC=562.14

Example
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ARIMA (p,d,q)
• Models for non-stationary series are called autoregressive integrated 

moving average models and denoted by ARIMA (p,d,q)
• p indicate the order of AR part
• d indicate the amount of differencing
• q indicate the order of MA part

• If the original series is stationary, then d=0 and the ARIMA models reduce 
to ARMA models

Autoregressive Integrated Moving Average 
(ARIMA)
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Building ARIMA Models

Use Model for Forecasting

Diagnostic Checking (Is the model adequate?)

Estimate Parameters in Tentatively Entertained 
Model 

Identify Model to be Tentatively Entertained

Postulate General Class of Models

YES
NO
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Parameter Estimation
• Once a tentative model has been selected, the parameter for that model 

must be estimated.
• The parameter in models are estimated by minimizing the sum of squares 

of the fitting errors.

Building ARIMA Models
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Parameter Estimation
• Once the least squares estimates and their standard errors are 

determined, t values can be constructed and interpreted in the usual way 
such as

Building ARIMA Models





ˆ

ˆ

estimatepoint   theoferror  standard

parametereach  of estimatePoint 

S
t

t

=

=
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Parameter Estimation
• Parameters that are judged significantly different from zero are retained 

in the fitted model (If p-value < 0.05, Reject H0).
• Parameters that are not significant are dropped from the model.

Null hypothesis, 𝐻0: 𝜃 = 0

Alternative hypothesis, 𝐻1: 𝜃 ≠ 0

Building ARIMA Models
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Diagnostic Checking
• Check for adequacy of the model.
• Often it is not straightforward to determine a single model that most 

adequately represents the data generating process, and it is common to 
estimate several models at the initial stage.  

• The model that is finally chosen is the one considered best based on a 
set of diagnostic checking criteria.  These criteria include
1. t-tests for coefficient significance
2. residual analysis
3. model selection criteria 

Building ARIMA Models
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White Noise Process
• In general, we assume the error term, εt is uncorrelated with anything, 

with mean 0 and constant variance, σ2. We called this process as White 
Noise process. 

Building ARIMA Models
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Diagnostic Checking
• An overall check of model adequacy is provided by a chi-square        test 

based on the Ljung-Box Q statistic. 

𝑄 = 𝑛 𝑛 + 2 ෍

𝑘=1

𝑚
𝑟𝑘
2 𝑒

𝑛 − 𝑘

𝑟𝑘 𝑒 = residual autocorrelation at lag 𝑘
𝑛 = number of residuals
𝑘 = time lag
𝑚 = number of time lags to be tested

Building ARIMA Models
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Diagnostic Checking
• If p-value is small (< 0.05), the model is considered inadequate. 
• Then, the analyst should consider a new or modified model and continue 

the analysis until a satisfactory model has been determined.

Building ARIMA Models



SLIDE 33Box Jenkins MethodologyAQ061-3-M-ODL Time Series Analysis and Forecasting

• Once an adequate model has been found, forecasts for one period or 
several periods into the future can be made.

• Computer programs that fit ARIMA models generate forecasts and 
prediction intervals at the analyst’s request.

• As more data become available, the same ARIMA model can be used to 
generate revised forecast from another time origin.

• Good to monitor forecast errors. If the forecast error tend to be 
consistently positive (under predicting) or negative (over predicting).

Building ARIMA Models
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• Often time series possess a seasonal component that repeats every 
observations.

• In order to deal with seasonality, ARIMA processes have been 
generalized and SARIMA models have then been formulated.

• SARIMA is known as is Seasonal AutoRegressive Integrated Moving 
Average.

Seasonal Autoregressive Integrated Moving 
Average (SARIMA)
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• The Box-Jenkins methodology for modeling seasonal data is no 
different to that from non-seasonal data. Consists of: 
• Stationary 
• Select an initial model 
• Estimate the model coefficients 
• Analyse the residuals 
• Forecasting 

• The slight change introduced by seasonal data of period k is that the 
seasonal coefficients of the ACF and PACF appear at lags k,2k,3k,… , 
rather than at lags 1,2,3,…

Seasonal Autoregressive Integrated Moving 
Average (SARIMA)
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• Seasonal (periodic) model with S observations per period.
• Monthly data has 12 observations per year (S = 12)
• Quarterly data has 4 observations per year (S = 4)
• Daily data has 5 or 7 (or some other number) of observations per week (S = 5 or 7)

• Stationary 
• General way to transform non-stationary to stationary series is given 

as: 
1 − 𝐵 𝑑 1 − 𝐵𝑆 𝐷𝑌𝑡

Seasonal Autoregressive Integrated Moving 
Average (SARIMA)
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Seasonal Autoregressive Integrated Moving 
Average (SARIMA)
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Seasonal MA model: 
• ARIMA(0,0,0)(0,0,1)12

• will show a spike at lag 12 in the ACF but no other significant spikes.
• The PACF will show exponential decay in the seasonal  lags i.e. at lags 12, 24, 

36,…

Seasonal AR model:
• ARIMA(0,0,0)(1,0,0)12

• will show exponential decay in seasonal lags of the ACF.
• Single significant spike at lag 12 in the PACF.

Example
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Seasonal Autoregressive Integrated Moving 
Average (SARIMA)
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Seasonal Autoregressive Integrated Moving 
Average (SARIMA)
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Seasonal Autoregressive Integrated Moving 
Average (SARIMA)
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• The PACF shows the exponential decay in values.
• The ACF shows a significant value at time lag 1.

– This suggest a MA(1) model.
• The ACF also shows a significant value at time lag 12

– This suggest a seasonal MA(1). 
• ARIMA (0,1,1)(0,1,1)12. 

Seasonal Autoregressive Integrated Moving 
Average (SARIMA)
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• SARIMA model is denoted by

• p indicate the order of regular AR part
• d indicate the regular amount of differencing
• q indicate the order of regular MA part
• P indicate seasonal AR part at period S (lag S)
• D indicate seasonal difference at period S
• Q indicate seasonal MA term at period S
• S indicate seasonal period/lag 

Seasonal Autoregressive Integrated Moving 
Average (SARIMA)

( , , )( , , )SARIMA p d q P D Q
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Seasonal Autoregressive Integrated Moving 
Average (SARIMA)

Regular 
AR(p)

Seasonal 
AR(p)

Seasonal 
MA(q)

Regular 
MA(q)

Seasonal
Differences

Regular 
Differences

t

S

Qqt

dD

S

S

Pp BBYBB  )()()()( +=
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• ∇𝑑= (1−𝐵)𝑑

• ∇𝑆
𝐷= (1−𝐵𝑆)𝐷

• 𝛿 = constant

• 𝑌𝑡 = time series data

• 𝜀t = white noise process/random error

• 𝜙𝑝 𝐵 = 1 − 𝜙1𝐵 − 𝜙2𝐵
2−. . . −𝜙𝑝𝐵

𝑝

• 𝜃𝑞 𝐵 = 1 + 𝜃1𝐵 + 𝜃2𝐵
2 +⋯+ 𝜃𝑞𝐵

𝑞

• Φ𝑃 𝐵𝑆 = 1 − Φ1𝐵
𝑆 −Φ2𝐵

2𝑆−. . . −Φ𝑃𝐵
𝑆𝑃

• Θ𝑄 𝐵𝑆 = 1 + Θ1𝐵
𝑆 + Θ2𝐵

2𝑆 +⋯+ Θ𝑄𝐵
𝑆𝑄

Seasonal Autoregressive Integrated Moving 
Average (SARIMA)
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Formulate the model equation based on the output below: 

ARIMA(1,0,0)(0,0,1)[4] with non-zero mean 

Coefficients:

ar1    sma1       mean

0.1051  0.8037  1630.9404

s.e. 0.1753  0.1650    76.6915

sigma^2 estimated as 61818:  log likelihood=-250.15

AIC=508.29   AICc=509.58   BIC=514.63

Example
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Formulate the model equation based on the output below and test the 
model: 

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)  

ar1   0.51225    0.21535  2.3786  0.01738 *

ma1   0.23030    0.19510  1.1804  0.23784  

sma1 -0.21569    0.20762 -1.0389  0.29886  

Box-Pierce test

data:  fit1$residual

X-squared = 10.699, df = 5, p-value = 0.05768

Example
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Split the below data into training (80%) and testing data (20%). Analyse the 
training data and formulate the model equation for the ARIMA model you 
chosen:

• sales.dat – quarterly sales data (in $’000) starting 01-01-2007 
• USABeerproduction.csv

Then, compute the accuracy of the model in the testing data. Check the 
residuals and test whether the model you chosen is satisfactory. 

Practical Exercise
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Review Questions
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1. Use Box Jenkins methodology to produce accurate forecasts based on a 
description of historical patterns in the data.
2. Solve the model using computer software and interpret the results.

Summary / Recap of Main Points
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Preparation for Class
• Volatile Models

What To Expect Next Week

In Class


