

AQ061-3-M-ODL-TSF Time Series Analysis and Forecasting

Topic 4 – Box Jenkins Methodology

At the end of this topic, you should be able to:

- 1. Use Box Jenkins methodology to produce accurate forecasts based on a description of historical patterns in the data.
- 2. Solve the model using computer software and interpret the results.

Contents & Structure

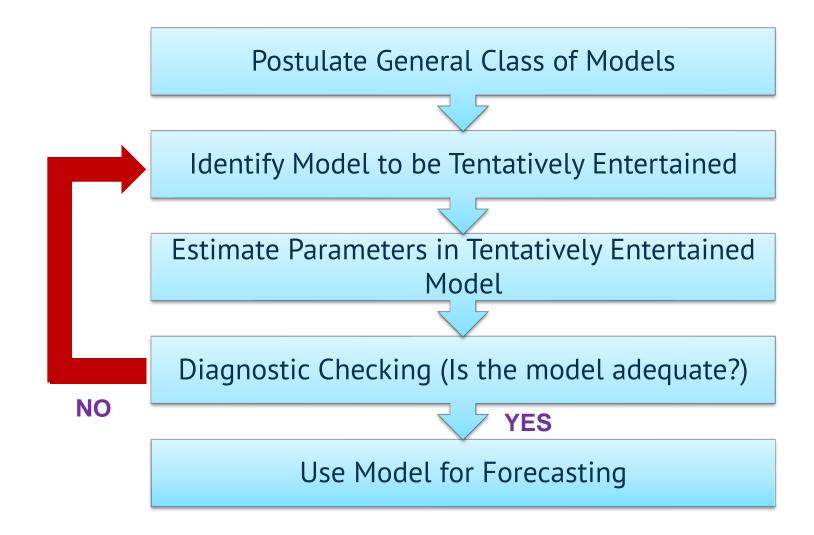
- Autoregressive (AR)
- Moving Average (MA)
- Autoregressive Moving Average (ARMA)
- Autoregressive Integrated Moving Average (ARIMA)
- Building ARIMA Models
- Seasonal Auto Regressive Integrated Moving Average (SARIMA)
- Building SARIMA Models

Recap From Last Lesson

Questions to ask to trigger last week's key learning points

Introduction

- The Box-Jenkins methodology refers to a set of procedures for identifying and estimating time series models within the class of AutoRegressive Integrated Moving Average (ARIMA) models.
- This models rely heavily on the autocorrelation pattern in the data.



Time series are stationary if they do not have trend or seasonal effects

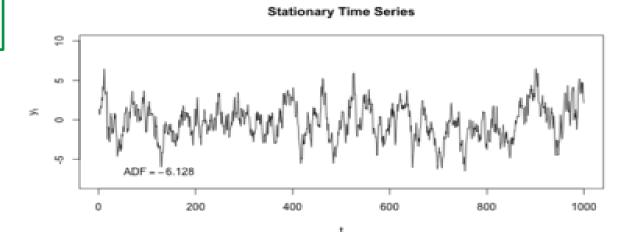
1.
$$E(Y_t) = \mu$$

2.
$$Var(Y_t) = \sigma^2$$

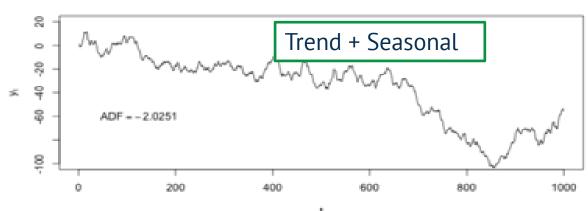
3.
$$Cov(Y_t, Y_{t-k}) = \gamma_k$$

4.
$$\rho_k = \frac{\gamma_k}{\sigma^2}$$

In other words, it has **constant mean and variance**, and covariance (and also correlation) between Y_t and Y_{t-1} is the same for all t.



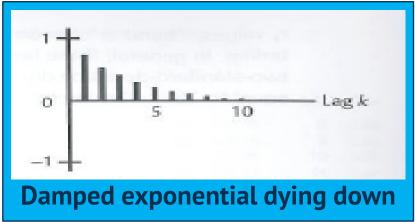
Non-stationary Time Series

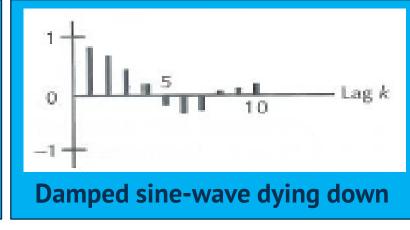


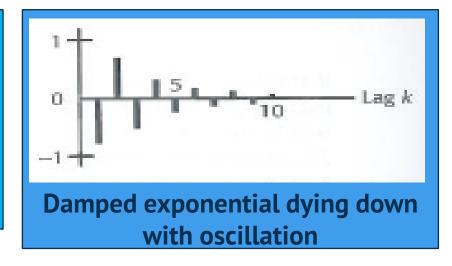
1. The ACF can cut off. A spike at lag k exists in the ACF if r_k is statistically large. The ACF cuts off after lag k if there are no spikes at lags greater

than k in the ACE.

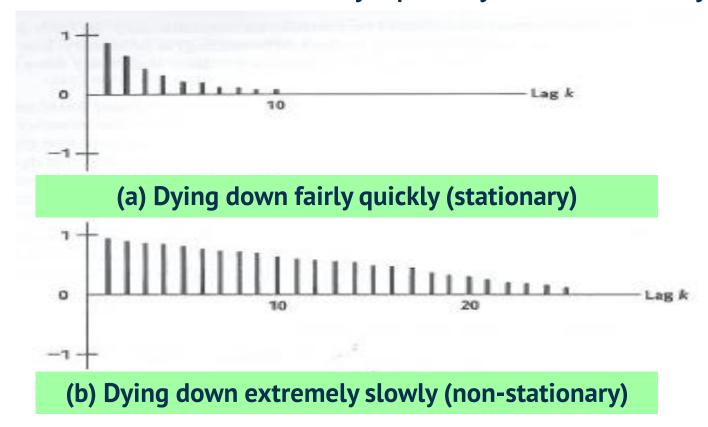
2. The ACF is said to die down if this function does not cut off but rather decreases in a 'steady fashion'.







3. The ACF can die down fairly quickly or extremely slowly.



Backshift operator is defined as

$$BY_t = Y_{t-1}$$

- In other words, B operating on Y_t has the effect of shifting the data back one period.
- It can be extended,

$$B^k Y_t = Y_{t-k}$$

• The operator is convenient for describing the process of differencing, i.e.

$$(1 - B)^d Y_t$$

ARIMA(p,d,q)

$$\phi_p(B) \nabla^d Y_t = \delta + \theta_q(B) \varepsilon_t$$
Regular AR(p)
Regular MA(q)

$$\nabla^{d} = (1 - B)^{d}$$

$$\delta = \text{constant}$$

$$Y_{t} = \text{time series data}$$

$$\varepsilon_{t} = \text{white noise/random error}$$

$$\phi_{p}(B) = 1 - \phi_{1}B - \phi_{2}B^{2} - \dots - \phi_{p}B^{p}$$

$$\theta_{q}(B) = 1 + \theta_{1}B + \theta_{2}B^{2} + \dots + \theta_{q}B^{q}$$

Moving Average (MA) Model

The model

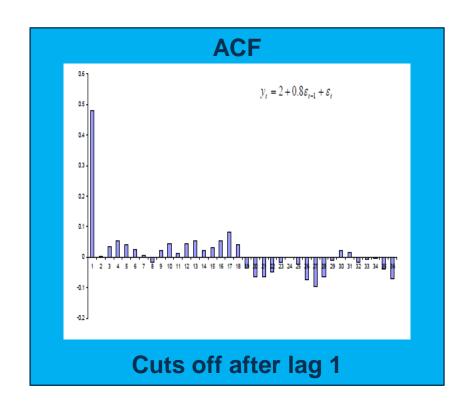
$$y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$

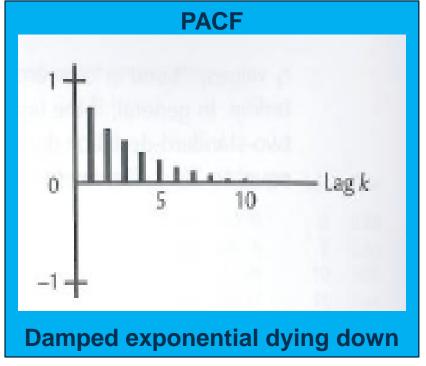
is called non-seasonal moving average model of order q.

- Denote this process as MA(q).
- The process is described completely by a weighted sum of current and lagged random disturbances.
- $\theta_1, \theta_2, ..., \theta_p$ are unknown parameter.

MA(1) Model

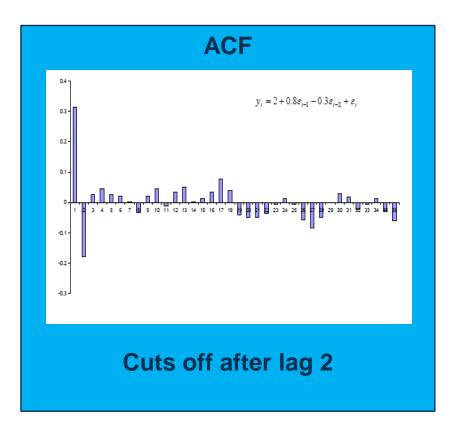
$$y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1}$$





MA(2) Model

$$y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$$



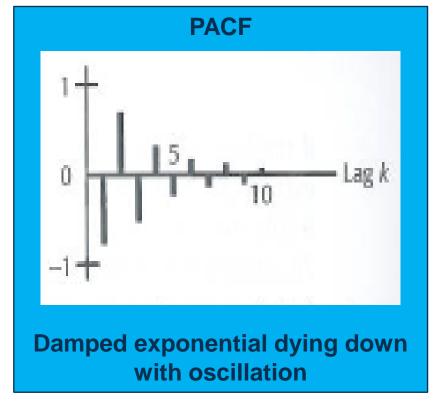


Table below shows the result of ARIMA modeling

	Estimates		
Constant (Mean)	6.957		
MA Lag 1, θ_1	0.765		
MA Lag 2, θ_2	0.997		
Difference	1		

Based on the observation below, forecast the value at period 5 if period 4 is the forecast origin assuming $F_1 = 6.957$

Time	1	2	3	4
Observed	6	15	10	4

Non-seasonal Autoregressive (AR) Model

The model

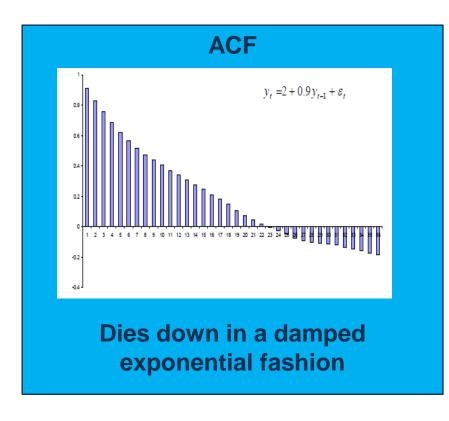
$$y_{t} = \delta + \phi_{1} y_{t-1} + \phi_{2} y_{t-2} + \dots + \phi_{p} y_{t-p} + \varepsilon_{t}$$

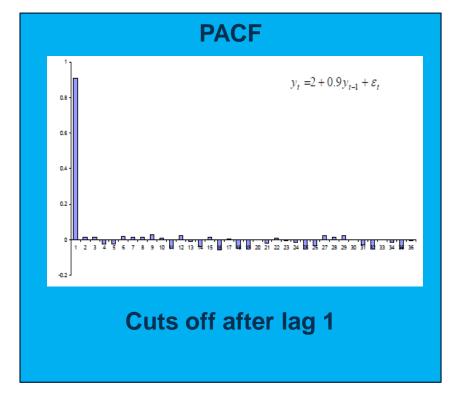
is called non-seasonal autoregressive model of order p.

- Denote this process as AR(p)
- The process depends upon a weighted sum of its past values and a random disturbance in the current period .
- $\phi_1, \phi_2, ..., \phi_p$ are unknown parameter

AR(1) Model

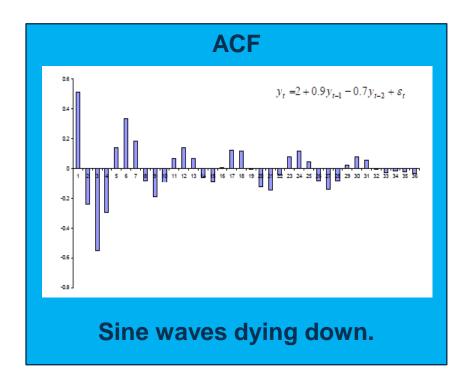
$$y_{t} = \phi_{1} y_{t-1} + \delta + \varepsilon_{t}$$

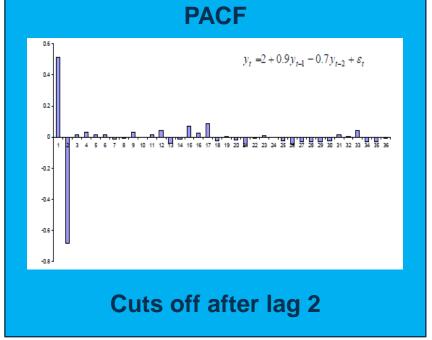




AR(2) Model

$$y_{t} = \phi_{1} y_{t-1} + \phi_{2} y_{t-2} + \delta + \varepsilon_{t}$$





Practical Exercise

Analyse the following data and formulate the model equation for the ARIMA model you chosen:

- quakes.dat
- population.csv average growth of population from 1970 to 2017

Autoregressive Moving Average (ARMA)

Non-seasonal Mixed Autoregressive Moving Average (ARMA) Model

The model

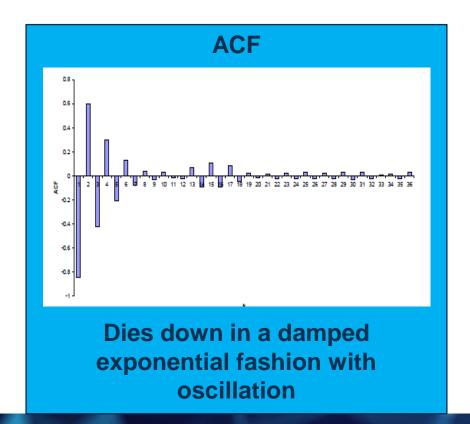
$$y_t = \delta + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p}$$
$$+ \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \dots + \theta_q \varepsilon_{t-q}$$

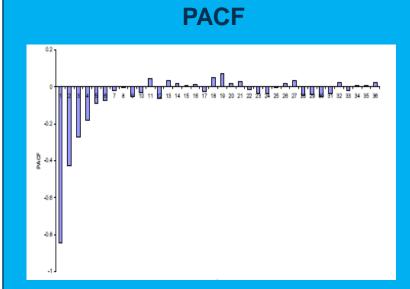
is called non-seasonal mixed autoregressive – moving average model of order (p,q).

- Denote this process as ARMA(p,q)
- Combine features of both MA and AR processes

• ARMA(1,1) Process

$$y_t = \delta + \phi_1 y_{t-1} + \varepsilon_t + \theta_1 \varepsilon_{t-1}$$





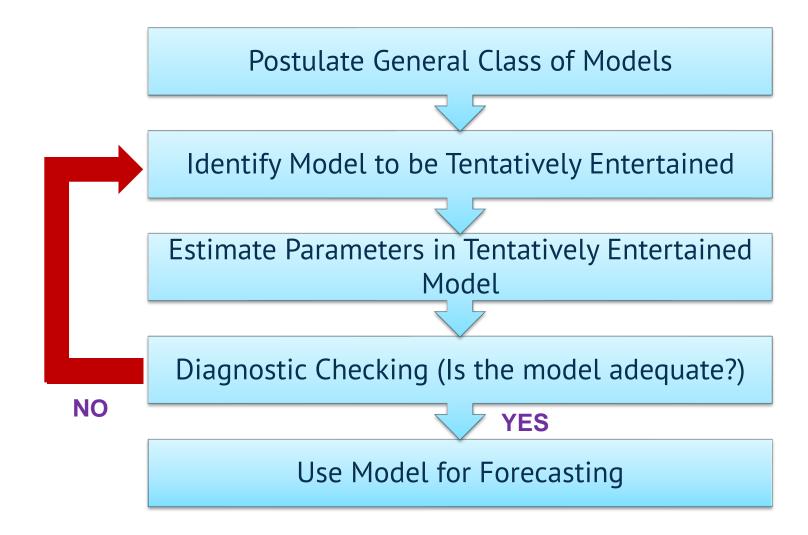
Dies down in a fashion dominated by damped exponential decay

Example

Formulate the model equation based on the output below:

ARIMA (p,d,q)

- Models for non-stationary series are called autoregressive integrated moving average models and denoted by ARIMA (p,d,q)
 - p indicate the order of AR part
 - d indicate the amount of differencing
 - q indicate the order of MA part
- If the original series is stationary, then d=0 and the ARIMA models reduce to ARMA models



Parameter Estimation

- Once a tentative model has been selected, the parameter for that model must be estimated.
- The parameter in models are estimated by minimizing the sum of squares of the fitting errors.

Parameter Estimation

 Once the least squares estimates and their standard errors are determined, t values can be constructed and interpreted in the usual way such as

$$t = \frac{\text{Point estimate of each parameter}}{\text{standard error of the point estimate}}$$

$$t = \frac{\hat{\theta}}{S_{\hat{\theta}}}$$

Parameter Estimation

- Parameters that are judged significantly different from zero are retained in the fitted model (If p-value < 0.05, Reject H_0).
- Parameters that are not significant are dropped from the model.

Null hypothesis, H_0 : $\theta = 0$

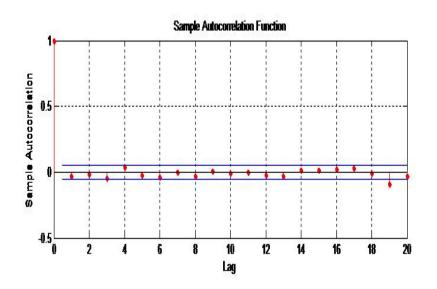
Alternative hypothesis, H_1 : $\theta \neq 0$

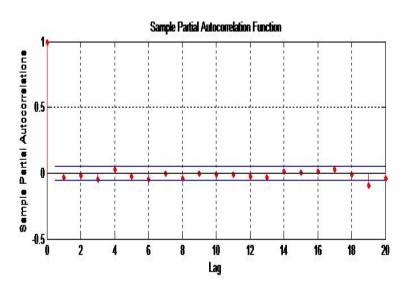
Diagnostic Checking

- Check for adequacy of the model.
- Often it is not straightforward to determine a single model that most adequately represents the data generating process, and it is common to estimate several models at the initial stage.
- The model that is finally chosen is the one considered best based on a set of diagnostic checking criteria. These criteria include
 - 1. t-tests for coefficient significance
 - 2. residual analysis
 - model selection criteria

White Noise Process

• In general, we assume the error term, ε_t is uncorrelated with anything, with **mean 0** and **constant variance**, σ^2 . We called this process as White Noise process.





Diagnostic Checking

• An overall check of model adequacy is provided by a chi-square based on the Ljung-Box Q statistic.

test

$$Q = n(n+2) \sum_{k=1}^{m} \frac{r_k^2(e)}{n-k}$$

 $r_k(e)$ = residual autocorrelation at lag k

n = number of residuals

k = time lag

m = number of time lags to be tested

Diagnostic Checking

- If p-value is small (< 0.05), the model is considered inadequate.
- Then, the analyst should consider a new or modified model and continue the analysis until a satisfactory model has been determined.

- Once an adequate model has been found, forecasts for one period or several periods into the future can be made.
- Computer programs that fit ARIMA models generate forecasts and prediction intervals at the analyst's request.
- As more data become available, the same ARIMA model can be used to generate revised forecast from another time origin.
- Good to monitor forecast errors. If the forecast error tend to be consistently positive (under predicting) or negative (over predicting).

- Often time series possess a seasonal component that repeats every observations.
- In order to deal with seasonality, ARIMA processes have been generalized and SARIMA models have then been formulated.
- SARIMA is known as is Seasonal AutoRegressive Integrated Moving Average.

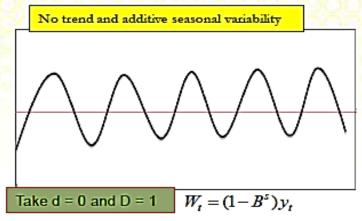
- The Box-Jenkins methodology for modeling seasonal data is no different to that from non-seasonal data. Consists of:
 - Stationary
 - Select an initial model
 - Estimate the model coefficients
 - Analyse the residuals
 - Forecasting
- The slight change introduced by seasonal data of period k is that the seasonal coefficients of the ACF and PACF appear at lags k, 2k, 3k,..., rather than at lags 1, 2, 3,...

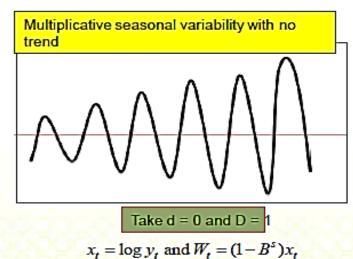
- Seasonal (periodic) model with S observations per period.
 - Monthly data has 12 observations per year (S = 12)
 - Quarterly data has 4 observations per year (S = 4)
 - Daily data has 5 or 7 (or some other number) of observations per week (S = 5 or 7)

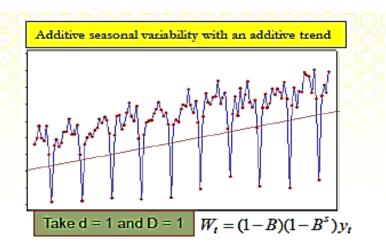
Stationary

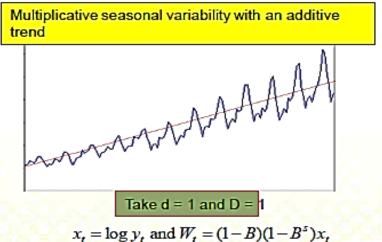
 General way to transform non-stationary to stationary series is given as:

$$(1-B)^d(1-B^S)^D Y_t$$









Seasonal MA model:

- ARIMA $(0,0,0)(0,0,1)_{12}$
 - will show a spike at lag 12 in the ACF but no other significant spikes.
 - The PACF will show exponential decay in the seasonal lags i.e. at lags 12, 24, 36,...

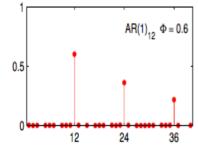
Seasonal AR model:

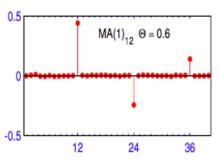
- ARIMA $(0,0,0)(1,0,0)_{12}$
 - will show exponential decay in seasonal lags of the ACF.
 - Single significant spike at lag 12 in the PACF.

Seasonal Autoregressive Integrated Moving Average (SARIMA)

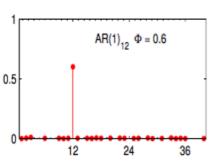
Simple autocorrelation function - Examples

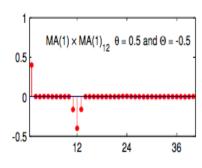
$MA(1)_{12} \Theta = 0.6$ 0.5

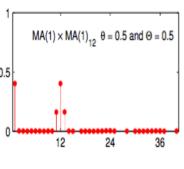


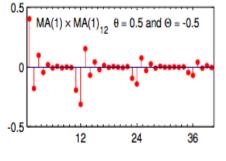


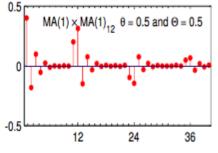
Partial autocorrelation function - Examples

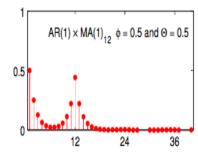


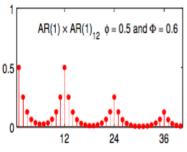


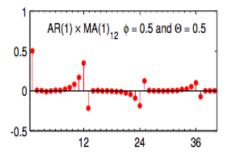


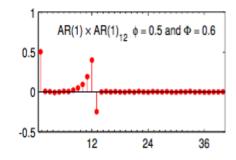




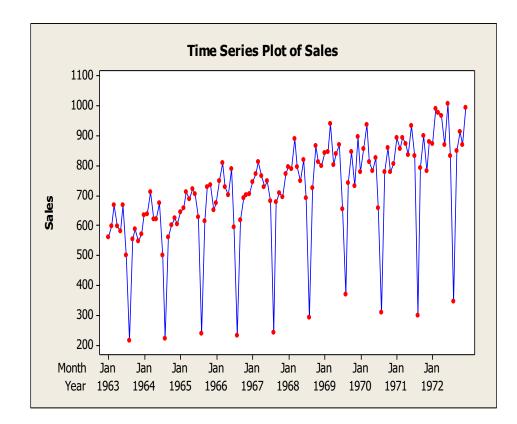


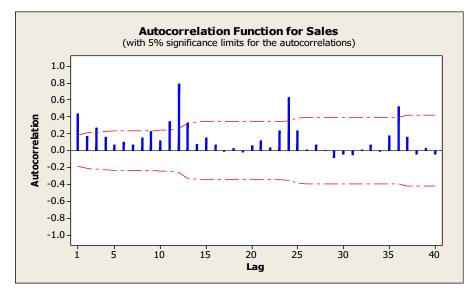


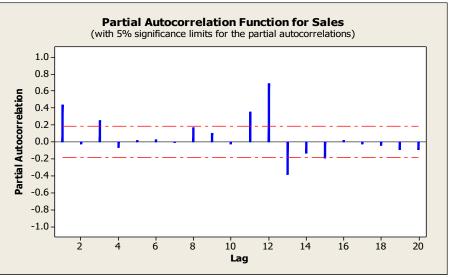


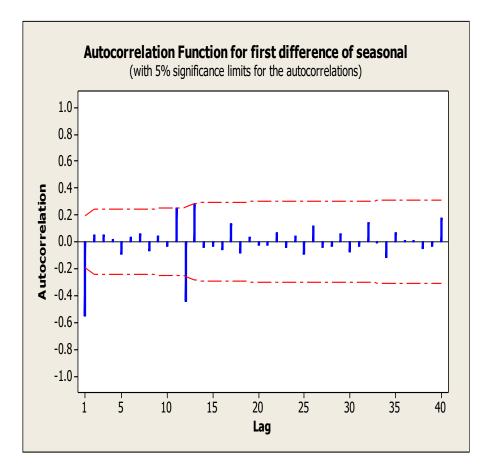


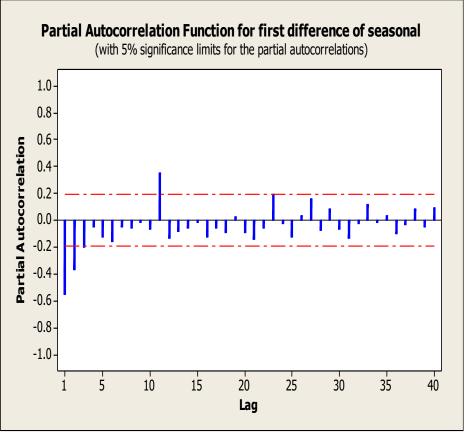
Seasonal Autoregressive Integrated Moving Average (SARIMA)









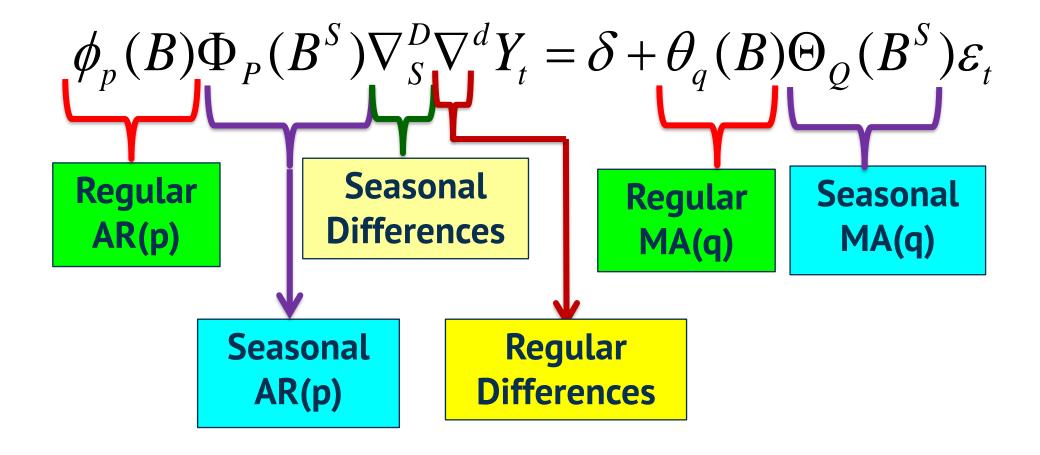


- The PACF shows the exponential decay in values.
- The ACF shows a significant value at time lag 1.
 - This suggest a MA(1) model.
- The ACF also shows a significant value at time lag 12
 - This suggest a seasonal MA(1).
- ARIMA $(0,1,1)(0,1,1)_{12}$.

SARIMA model is denoted by

$$ARIMA(p,d,q)(P,D,Q)_{S}$$

- p indicate the order of regular AR part
- d indicate the regular amount of differencing
- q indicate the order of regular MA part
- P indicate seasonal AR part at period S (lag S)
- D indicate seasonal difference at period S
- Q indicate seasonal MA term at period S
- **S** indicate seasonal period/lag



•
$$\nabla^d = (1 - B)^d$$

•
$$\nabla_S^D = (1 - B^S)^D$$

- $\delta = constant$
- Y_t = time series data
- ε_t = white noise process/random error

•
$$\phi_p(B) = 1 - \phi_1 B - \phi_2 B^2 - \dots - \phi_p B^p$$

•
$$\theta_q(B) = 1 + \theta_1 B + \theta_2 B^2 + \dots + \theta_q B^q$$

•
$$\Phi_P(B^S) = 1 - \Phi_1 B^S - \Phi_2 B^{2S} - \dots - \Phi_P B^{SP}$$

•
$$\Theta_Q(B^S) = 1 + \Theta_1 B^S + \Theta_2 B^{2S} + \dots + \Theta_Q B^{SQ}$$

Example

Formulate the model equation based on the output below:

ARIMA(1,0,0)(0,0,1)[4] with non-zero mean

Coefficients:

```
ar1 sma1 mean 0.1051 0.8037 1630.9404 s.e. 0.1753 0.1650 76.6915
```

```
sigma^2 estimated as 61818: log likelihood=-250.15 AIC=508.29 AICc=509.58 BIC=514.63
```


Example

Formulate the model equation based on the output below and test the model:

```
z test of coefficients:
    Estimate Std. Error z value Pr(>|z|)
ar1    0.51225    0.21535    2.3786    0.01738 *
ma1    0.23030    0.19510    1.1804    0.23784
sma1 -0.21569    0.20762 -1.0389    0.29886
```

```
Box-Pierce test
data: fit1$residual
X-squared = 10.699, df = 5, p-value = 0.05768
```


Practical Exercise

Split the below data into training (80%) and testing data (20%). Analyse the training data and formulate the model equation for the ARIMA model you chosen:

- sales.dat quarterly sales data (in \$'000) starting 01-01-2007
- USABeerproduction.csv

Then, compute the accuracy of the model in the testing data. Check the residuals and test whether the model you chosen is satisfactory.

Summary / Recap of Main Points

- 1. Use Box Jenkins methodology to produce accurate forecasts based on a description of historical patterns in the data.
- 2. Solve the model using computer software and interpret the results.

In Class

Preparation for Class

Volatile Models