
SLIDE 1Module Code & Module Title Slide Title

INTRODUCTION TO VISUAL AND
INTERACTIVE PROGRAMMING

CT803-4-0-OIVIP

Topic: Procedures and Functions

SLIDE 2Module Code & Module Title Slide Title

Topic Learning Outcomes

At the end of this topic, you should be able to:
• Explain procedures and function
• Identify the use of message broadcasting and make a block as

procedure in block programming.
• Define the purpose of procedure in large program.
• Implement procedures in block programming

SLIDE 3Module Code & Module Title Slide Title

Contents & Structure

• Procedures
• Variables and Argument
• Messaging, Broadcasting and Receiving
• Create large program in small steps
• Working with procedures

SLIDE 4Module Code & Module Title Slide Title

Introduction

SLIDE 5Module Code & Module Title Slide Title

• In general, a problem is solved in 3 steps:

Solve a Complex Problem

OutputComputation
(Process)Input

SLIDE 6Module Code & Module Title Slide Title

Introduction to Modular Programming

When a program becomes very large and complex, it becomes very difficult task for the
programmers to design, test and debug such a program.

Therefore, a long program can be divided into a smaller program called modules called
modules as the modules can be designed, tested and debugged separately, the task of
programmer becomes easy and convenient.

It makes your program easy to understand.

SLIDE 7Module Code & Module Title Slide Title

Why Modular Programming

Helps manage complexity

Smaller blocks of code

Easier to read

Encourages re-use of code

Within a particular program or across different programs

Allows independent development of code

SLIDE 8Module Code & Module Title Slide Title

Can be written and tested separately

Can be reused

Large projects can be developed in parallel

Reduces length of program, making it more readable

Promotes the concept of abstraction

Advantages of Modular Programming

SLIDE 9Module Code & Module Title Slide Title

Creating Large Programs in
Small Steps

• The scripts that you’ve written up to this point are relatively

short and simple.

• Eventually, you’ll write longer, more complex scripts that

contain hundreds of blocks, and understanding and maintaining

them will become a real challenge.

• An approach known as structured programming was developed

in the mid-1960s to simplify the process of writing,

understanding, and maintaining computer programs.

• Instead of having you write a single large program, this

approach calls for dividing the program into smaller pieces,

each of which solves one part of the overall task.

SLIDE 10Module Code & Module Title Slide Title

What we have in Visual(graphical) Programming?

They call it as

procedure

SLIDE 11Module Code & Module Title Slide Title

Procedure and Function in Snap!

Modules in Snap! are called procedure / function.

A procedure is a module performing one or more actions; it does not need to return
any values.

A procedure may have 0 to many parameters.

• The header and keyword (this contains the procedure name and the parameter list)
• The body, which is everything after the procedure or parameter list

Every procedure has two parts:

Functions are a type of stored code and are very similar to procedures.

Functions can accept one, many, or no parameters, but a function must have a report
(return) clause in the executable section of the function.

SLIDE 12Module Code & Module Title Slide Title

Procedures and Functions in Snap!

They are used for two reasons:
They can be used to avoid repetition of commands

within the program

Careful use of functions and procedures helps to define
a logical structure for your program by breaking it down

into a few smaller modules.

Functions and procedures are small sections of code used
to perform a specific task.

SLIDE 13Module Code & Module Title Slide Title

Function in Snap!

Is a series of statements enclosed by the certain module (of that system) and End
Function statements.

The Function procedure performs a task and then returns control to the calling
code.

When it returns control, it also may return a value to the calling module

Function that report (return) a value are called reporters.

SLIDE 14Module Code & Module Title Slide Title

Elements of Functions

Function definition:
Will defines how the function will perform the
task

Function call:
Will call the function with or without
arguments.

SLIDE 15Module Code & Module Title Slide Title

• Functions that pre-defined in the
library (round(), sqrt(), pick random(),
length()

Pre-defined
(built-in)
functions:

• Which is define by the user.
Programmer-

defined
functions:

Type of Functions

SLIDE 16Module Code & Module Title Slide Title

Procedures

In Block Programming
• Procedures that do something are called commands.

• When making a block, you choose the name of the
block, the input parameters, and the palette it
should appear in (the color).

• Then you will design the instructions that will run
when the block is clicked.

SLIDE 17Module Code & Module Title Slide Title

All sprites hear the broadcast, but they’ll

only act on it if they have a corresponding

when I receive block.

Any sprite can broadcast a message (you

can call this message anything you like)

using the broadcast or broadcast and

wait blocks (from the Control palette) shown

in Figure 7.1.

This broadcast triggers all scripts in all

sprites (including the broadcasting sprite

itself) that begin with a matching when I

receive trigger block.

Message

Broadcasting and

Receiving

Figure 7.1

SLIDE 18Module Code & Module Title Slide Title

Message, Broadcasting and Receiving

Hold a

Conversation

• Have sprites chat

with one another in

an animated scene

or story.

• Broadcasting can

prompt a character

to answer a

question.

• Or cause a

character to

respond to

something that was

said.

Respond to

Events

• Use

broadcasting to

make a sprite

react to an

event.

• For example, a

character may

move or change

appearance

when something

happens.

Produce Multiple

Actions at the

Same Time

• Broadcasting

can send a

message to

many sprites.

• This can cause

several

characters to do

something at

the same time.

• This enhances

storytelling and

holds viewer

interest.

Control

Game Play

• Direct when a

game begins

using

broadcasting.

• After the

instructions

appear on the

screen a

broadcasted

message can

launch the

game.

• Use it to make

targets appear or

start a timer.

End a Game
Organize

Scripts

• Long scripts in

BYOB / SNAP!

cannot display

on one screen.

• This makes

them difficult to

debug.

• A solution is to

divide the

script into

smaller chunks

using

broadcasting

• Set what happens

when a game is over.

• Use broadcasting to

inform a player that

the game has ended.

• For instance, you

could display a

message, such as

GAME OVER.

• Broadcasting can also

be used to stop game

play.

• For example, you

could hide targets to

prevent the player

from scoring more

points.

What can you do with broadcasting?

SLIDE 19Module Code & Module Title Slide Title

Plan to Broadcast a Message in
your Application

When using broadcasting it is a good idea to PLAN AHEAD:

01

02

04

03

Decide what you want to

happen

Study the sprite’s script. To send the

message at the right time, where should

the broadcast coding block be placed?

Once you have an idea, pick the sprite

that will send the message. Who is in

control of when an action happens?

Next, pick the sprite or sprites that will

receive the message. What will they do

when they receive the message?

SLIDE 20Module Code & Module Title Slide Title

At this point, you might ask,

“How do we create these

function?”
Before Scratch 2, you

couldn’t build the Initialize

block shown and then call it

from your script.

The only way to emulate

procedures and add some

structure to a program was

through BYOB message-

broadcasting mechanism.

This has changed in Scratch

2 and BYOB, which added

the powerful of “make a

block” feature.

SLIDE 21Module Code & Module Title Slide Title

BUILDING YOUR
OWN BLOCK

We will Only Look

Here for custom

blocks

If you leave the Category as O
ther your custom block will b
e grey color and found at the
bottom of the Variables categ
ory

SLIDE 22Module Code & Module Title Slide Title

BUILDING YOUR OWN BLOCK

A

B

C

You May choose a Category so the

block appears in that section

You Must choose a Type so the

block has the right shape

You Must choose the Scope

SLIDE 23Module Code & Module Title Slide Title

Function – Input Type Dialog

• There are twelve input type shapes,
plus three mutually exclusive
categories, listed in addition to the
basic

• Choose between title text and an
input name.

• Default type - “Any,” meaning that
this input slot is meant to accept any
value of any type.

• If the size input in your block should
be an oval-shaped numeric slot
rather than a generic rectangle, click
“Number.

SLIDE 24Module Code & Module Title Slide Title

• Parameters are the means to pass values to and from the calling environment to
the server.

• These are the values that will be processed or returned via the execution of the
procedure/functions

Parameters

SLIDE 25Module Code & Module Title Slide Title

Variables vs Argument

Variables

• Variables declared within functions or procedures are

said to be local.

• Can only be used within that function, or other functions

called by that function.

• This is called the scope of the variable. See variable

slides.

• Some functions will require arguments - values

upon which the operation performed by the

function will be based.

• If you are using a typed language, then you will

need to give the argument a type in your

function/procedure declaration.

Argument

SLIDE 26Module Code & Module Title Slide Title

The difference is subtle, but not
difficult:

Parameter Arguments

Defined by the programmer when the
method is defined, and given names w
hich do not change

Running program can provide differe
nt values for the arguments each tim

e the method is called

For example, in a max of (x) and (y)

method, x and y are parameters, but

when it is used you have something

like max of (9) and (3), where 9 and

3 are arguments

As a general rule, if we are talking

about using a method we are talking

about arguments, and if we are

talking about a method definition we

are talking about parameters.

SLIDE 27Module Code & Module Title Slide Title

• In Snap!, a function that report (return) a value are called reporters.
• Reporter blocks have a rounded shape, and they can either be clicked to report a value to

the programmer or they can be dropped into an empty input slot of another block to be
used as input.

• When you make a reporter block, the block definition automatically includes a report
block.

• The value of the expression in the input slot of this report block is the value that is
returned when the reporter is run.

• Here is an example of what a real reporter block definition might look like in Snap!:

Function with parameters

SLIDE 28Module Code & Module Title Slide Title

• Procedures
• Variables and Argument
• Messaging, Broadcasting and Receiving
• Create large program in small steps

Summary / Recap of Main Points

