
SLIDE 1Module Code & Module Title Slide Title

INTRODUCTION TO VISUAL AND
INTERACTIVE PROGRAMMING

CT803-4-0-OIVIP

Topic: Object-Oriented Programming

SLIDE 2Module Code & Module Title Slide Title

Topic Learning Outcomes

At the end of this topic, you should be able
to:
• Describe the basics of object-oriented programming.
• Implement clone, constructor and method in block

programming.

SLIDE 3Module Code & Module Title Slide Title

Contents & Structure

• Object oriented
• Defining Classes and Objects
• Object-Oriented Programming Concepts and Terminology
• Object oriented in Block Programming
• Working with Object

SLIDE 4Module Code & Module Title Slide Title

“Object-oriented programming is an approach that
provides a way of molding programs by creating

partitioned memory area for both data, and functions
that can be used as templates for creating copies of

such modules on demand.”

Object Oriented Programming - OOP

SLIDE 5Module Code & Module Title Slide Title

Object-oriented programming - General

Also known as OOP, is a programming paradigm.

It revolves around data structures called objects, which consist of states and behaviors, and the interaction
between them via message passing; messages and variables are the two main kinds of abstraction used in OOP.

Rather than write a set of procedures to manipulate members of each data type, the behavior becomes part of
the data itself.

This makes many kinds of program, particularly ones involving simulation or graphical interfaces, easier to
write.

SLIDE 6Module Code & Module Title Slide Title

Basic Concept

SLIDE 7Module Code & Module Title Slide Title

Defining Classes and Objects

Classes and Objects are basic concepts of
Object-Oriented Programming which
revolve around the real-life entities.

SLIDE 8Module Code & Module Title Slide Title

• Class
– A class is a group of objects which have common properties.
– It is a template or blueprint from which objects are created.
– It is a logical entity.

• It is non primitive data type. –
• It cannot be physical(no memory space)
• Class members are access modifiers, objects , Methods , Instance variable and constructors.

• Object
– An Object is an Instance of a class
– Any entity that has state and behavior is known as an object.
– For example, a chair, pen, table, keyboard, bike, etc. It can be physical or logica

Class and Object

SLIDE 9Module Code & Module Title Slide Title

Defining Classes and Objects

Class is a collection of similar objects.

The object that satisfies the class definition of a particular class are said to be an
instantiate of the class.

SLIDE 10Module Code & Module Title Slide Title

Class

SLIDE 11Module Code & Module Title Slide Title

Object

SLIDE 12Module Code & Module Title Slide Title

Bird
Flying

Non-flying

Inheritance

SLIDE 13Module Code & Module Title Slide Title

Data Abstraction and Encapsulation

Encapsulation:

Calculator shows the result of

equation but hides the

implementation(Calculating the result)

involved

Abstraction:

The calculator shown in the figure

must be powered by a battery source.

How the battery works for the

calculator is not necessary to know.

SLIDE 14Module Code & Module Title Slide Title

Message Passing

SLIDE 15Module Code & Module Title Slide Title

Class-based OOP

A class represents a type;
Everything is an

object

Objects communicate
via messages (handled

by methods)

Objects have their
own state

Every object is an
instance of a class

A class describes its
instances’ behavior

The traditional form of object-oriented programming is
called class-based OOP.

SLIDE 16Module Code & Module Title Slide Title

Prototype-based OOP

Classes are not necessary; instead, objects extend other objects, called their
prototypes, and variables and methods may be added to any object at any time.

If an object does not understand a message, it is automatically delegated to its
prototype

There are two methods of constructing
new objects:

object creation "from nothing" or

through cloning an existing object.

Example – BYOB and SNAP!

SLIDE 17Module Code & Module Title Slide Title

• A style based around the abstraction object: a collection of data and methods
(procedures, which from our point of view are just more data) that you interact
with by sending it a message (just a name, maybe in the form of a text string, and
perhaps additional inputs).

• Object responds to the message by carrying out a method, which may or may not
report a value back to the asker.

• Snap! approach is less restrictive than that of some other OOP languages; allowed
objects easy access to each others’ data and methods.

Object Oriented with Sprites

SLIDE 18Module Code & Module Title Slide Title

Object Oriented with Sprites

• Technically, object-oriented programming for BYOB and SNAP! Is
based on these three
– Message passing: There is a notation by which any object can send a message to another

object.
– Local state: Each object can remember the important past history of the computation it has

performed. (“Important” means that it need not remember every message it has handled, but
only the lasting effects of those messages that will affect later computation.)

– Inheritance: It would be impractical if each individual object had to contain methods, many
of them identical to those of other objects, for all the messages it can accept.

SLIDE 19Module Code & Module Title Slide Title

• Snap! sprites are first class data.
• They can be created and deleted by a script, stored in a variable or list, and sent

messages individually.
• The children of a sprite can inherit sprite-local variables, methods (sprite-local

procedures), and other attributes (e.g., x position).

First Class Sprites

SLIDE 20Module Code & Module Title Slide Title

• The block is used to create and report an instance (a clone) of any
sprite. (There is also a command version, for historical reasons.) There are two
different kinds of situations in which clones are used.
– Made an example sprite and, when project start, you want a fairly large number of essentially

identical sprites that behave like the example. (The example sprite called as the “parent” and the
others the “children.”) These are temporary clones. They are automatically deleted when the user
presses either the green flag or the red stop sign.

Permanent and Temporary Clones

SLIDE 21Module Code & Module Title Slide Title

– Need or want specializations of sprites.
• For example, you have a sprite named Dog. It has certain behaviors, such as running up to a person who

comes near it.
• You decide that the family in your story really likes dogs, so they adopt a lot of them. Some are cocker

spaniels, who wag their tails when they see you. Others are rottweilers, who growl at you when they see
you.

• So, you make a clone of Dog, perhaps rename it Cocker Spaniel, and give it a new costume and a script for
what to do when someone gets nearby.

• You make another clone of Dog, perhaps rename it Rottweiler, and give it a new costume, etc.
• Then you make three clones of Cocker Spaniel (so there are four altogether) and two clones of Rottweiler.
• Maybe you hide the Dog sprite after all this, since it’s no breed.
• Each dog has its own position, special behaviors, and so on.
• You want to save all these dogs in the project.
• These are permanent clones.

Permanent and Temporary Clone

SLIDE 22Module Code & Module Title Slide Title

• The messages that a sprite accepts are the blocks in its palettes, including both
all-sprites and this-sprite-only blocks.

• The way to send a message to a sprite (or the stage) is with the tell block (for
command messages) or the ask block (for reporter messages).

• Tell and ask wait until the other sprite has carried out its method before this
sprite’s script continues.

Sending Message to Sprites

SLIDE 23Module Code & Module Title Slide Title

Constructing Objects

Constructors are used for initializing new objects.

Fields are variables that provides the state of the class and its objects,
and methods are used to implement the behavior of the class and its
objects.

SLIDE 24Module Code & Module Title Slide Title

Every object can contain attributes and methods:

• Is a variable that is associated with one object.

• Is a function or a script that causes an object to perform some

action.

• A method can access or change the attributes associate with this

object, or it can perform some other action.

• A special kind of method called a constructor defines the actions

required to initialize all of the attributes of an object - when an object

is created, it creates variables for all of its attributes, and just like

any variables these should be initialized!

Attribute

Method

Attribute and Method

SLIDE 25Module Code & Module Title Slide Title

List of Attributes

A

• Some BYOB/SNAP! operations that work

on objects. In the “Sensing” category of the

blocks palette, there is a reporter block at

the bottom that is named “attribute” (BYOB)

and “my”(Snap!).

• If you drag that out and click the drop-down

menu, you’ll see this long list:

B

• Those are all the “standard attributes” that

are part of any sprite!

• You can see everything from the name of

the sprite, to direction and x and y

position coordinates, current costume

number, and more

SLIDE 26Module Code & Module Title Slide Title

List of Attributes

Several of these are not real
attributes, but rather lists of
things related to attributes:

• neighbors: a list of nearby
sprites

• other sprites: a list of all
sprites except myself

• clones: a list of my temporary
clones

• other clones: a list of my
temporary siblings

• parts: a list of sprites whose
anchor attribute is this sprite

• children: a list of all my
clones, temporary and
permanent

• costumes: a list of the sprite’s
costumes

• sounds: a list of the sprite’s

The others are non-lists:

• self: this sprite
• anchor: the sprite of which I

am a (nested) part
• stage: the stage, which is

first-class, like a sprite
• parent: the sprite of which I

am a clone
• name: my name (same as

parent’s name if I’m
temporary)

• dangling?: True if I am a part
and not in synchronous orbit

Don’t rely on these screwy ones
which are likely to change:

• rotation x, rotation y: same as
x position, y position

• center x, center y: the x and y
position of the center of my
bounding box, rounded off

SLIDE 27Module Code & Module Title Slide Title

Visual Programming: Clear Mainline

• Every sprite should have one and only one Green Flag script
– Snap! allows more than one Green Flag script, but it is easy to give conflicting instructions, or to

count on one being executed first

• Snap! provides blocks for running scripts in parallel, and running scripts that belong
to other sprites

01

Run
Takes a Command (script) as its
input, and carries out its
instructions

02

Launch
Identical to run except that it
calls the method as a separate
script, so the calling script can
meanwhile do something else

03

Call
Takes a Reporter or Predicate block as its

input, and returns a value that can be
stored in a variable or used in a condition

SLIDE 28Module Code & Module Title Slide Title

• Object oriented
• Defining Classes and Objects
• Object-Oriented Programming Concepts and Terminology
• Object Oriented in Block Programming
• Working with Objects

Summary / Recap of Main Points

