
Week 2: Introduction to Computers and Programming

Lecture slides

Introduction to Visual and Interactive
Programming

CT803-4-0-OIVIP

Topic 1
Introduction to Computers and Programming

Your notes here

SLIDE 2Module Code & Module Title Slide Title

Define

+ Computer

+ Program

+ Programming language

Explain

+ Programming language
generations

Differentiate

+ Programming language types

Topic learning outcomes

SLIDE 3Module Code & Module Title Slide Title

• Definition of computer, programming, and programming language

• Programming Language Generations and Types

• Integrated Development Environment (IDE)

• Graphical Programming

• Planning a Computer Program

Contents

SLIDE 4Module Code & Module Title Slide Title

What is a computer?

SLIDE 5Module Code & Module Title Slide Title

• Machine that processes information and perform tasks.

• Used in almost every field of human endeavor
– Science

– Engineering

– Business

– The arts

A Computer, defined

SLIDE 6Module Code & Module Title Slide Title

• A computer is an electronic device, operating under the control of instructions stored
in its own memory
– Accepts data (input),

– processes the data according to specified rules,

– produces information (output), and

– stores the information for future use

• Most people are inclined to see the computer as smart

• Computers do exactly as humans tell it to do
– Fast, precise

Computer

SLIDE 7Module Code & Module Title Slide Title

• Tells the computer what to do

• Set of instructions that details ordered operations
– Algorithms written in programming language and translated to run on a machine

• Perform a specific function(s) or/and achieve specific result(s)

• Program, app and software are sometimes used interchangeably
– Writing a recipe is writing exact steps to cook something: program

– A specific and complete recipe can be used to prepare a specific dish: app

– A complete meal prepared with specific recipe(s) using specific kitchen ware: software

Computer Program

SLIDE 8Module Code & Module Title Slide Title

• Set of statements and syntax rules
– Imagine talking to someone using limited vocabulary and very strict grammar

• Implements sequential, conditional and iterative algorithms

• Programming is also called coding
– Writing the instruction that the computer will execute

– High-level programming language allows for English-like sentences

• The program will eventually be turned into machine language
– Compiler

– Interpreter

Programming Language

SLIDE 9Module Code & Module Title Slide Title

• A computer is a machine
– Uses machine language

– Executes a program and produces output

• Human programmers write code in
human-like language

• A compiler is a program that converts a
program written in a programming
language into machine language

Compiler

SLIDE 10Module Code & Module Title Slide Title

• Alternative to a compiler

• A compiler converts a program to the language of the computer

• The interpreter takes a program one statement at a time

• Executes a corresponding set of machine instructions

Interpreter

SLIDE 11Module Code & Module Title Slide Title

Compiler Algorithm

Experienced/
Consumed/ Used by

(human) user

Output

Translated by
compiler/ Executed

by interpreter

Program

Translated by human

Algorithm

SLIDE 12Module Code & Module Title Slide Title

Programming Language Generations

• 1GL: Machine language

• 2GL: Assembly languageLow level languages

• 3GL: English-like words

• 4GL: Human-like statements

• 5GL: Visual tools

High Level
languages

SLIDE 13Module Code & Module Title Slide Title

• Binary codes (Base-2)

• Sequence of 1s and 0s
that means something

• Simple to represent

Machine Language

SLIDE 14Module Code & Module Title Slide Title

• Abbreviations to represent a command

– Words and symbols

• Easier to understand compared to
machine language
– Still machine-specific

• Very different from human language

Assembly Language

SLIDE 15Module Code & Module Title Slide Title

• English-like environment

– Easier to remember and figure out
commands

• Portable codes

– Similar codes can run on different devices

High Level Languages

• Examples of 3rd Generation Languages: C, C++ and Java

• Examples of 4th Generation Languages: Perl, Python and Ruby

• Examples of 5th Generation Languages: Mercury, OPS5, and Prolog

SLIDE 16Module Code & Module Title Slide Title

Comparison

‹#›

SLIDE 17Module Code & Module Title Slide Title

• Programming is an activity that
requires different assets and
facilities

– Code editor

– Compiler

– Debugger

• An IDE integrates these assets and
facilities in one interface

• Cooking in a kitchen

Integrated Development Environment (IDE)

SLIDE 18Module Code & Module Title Slide Title

Simplified online version of an IDE

Integrated Development Environment (IDE)

SLIDE 19Module Code & Module Title Slide Title

Seems familiar?

Integrated Development Environment (IDE)

SLIDE 20Module Code & Module Title Slide Title

Graphical Programming

• What we’ll learn: Creating an interactive application.

• Basic concepts involved in creating an interactive application:

– Control of flow

– Interactive Animations

– Events

– Event Handling Methods

SLIDE 21Module Code & Module Title Slide Title

Control of Flow

• How the sequence of actions in a program is controlled

• What action happens first, what happens next, and so on

Control of flow

• Has a storyline

• Designed sequence planned out by writing program methods

In movie-style programs the sequence of actions is
determined by the programmer

SLIDE 22Module Code & Module Title Slide Title

Interactive Animation

In interactive programs, the
sequence of actions is
determined at runtime when the
user provides input

Clicks the mouse

Presses a key on the keyboard

Some other source of input

In essence, control of flow is now “in the hands of the user!”

SLIDE 23Module Code & Module Title Slide Title

Events

Each time the user provides some sort of input, we say
an event is generated.

An event is “something that happens”

SLIDE 24Module Code & Module Title Slide Title

Event Handling Methods

An event may

• Trigger a response, or

• Move objects into positions that create some condition (e.g., a collision) that triggers a
response.

A method is called to carry out the response. We call this kind of
method an event handling method.

When an event is linked to a method that performs an action, a
behavior is created.

SLIDE 25Module Code & Module Title Slide Title

• Make a sprite move across the
screen: Make the sprite move
from one edge of the screen to
the other, and then back again.
You can also change the sprite's
costume, direction, or size to
make it more interesting.

• Event: User clicks on green flag

• You will create the event
handling method “when green
flag clicked”

• Plan your method:

– First, ...

– Then, …

– After that, …

Revisiting the Lab: Exercise 1

SLIDE 26Module Code & Module Title Slide Title

Repeat forever:

Sprite moves according to current direction

If sprite touches stage boundary

Sprite changes to opposite direction

(change costume?)

(change size?)

When green flag clicked

SLIDE 27Module Code & Module Title Slide Title

Make a sprite say something:
Make a sprite say hello, ask the
user's name, and then say
something nice about them.

• Let’s start this program by
pressing the space bar

• There are TWO (2) events here

– Space bar pressed

– User input obtained

• Start planning your methods:

1. When space bar pressed

2. When user input obtained

Revisiting the Lab: Let’s do Exercise 2!

SLIDE 28Module Code & Module Title Slide Title

• In revisiting Exercises 1 and 2, we
essentially wrote a “recipe”

– How a sprite should behave when
an event is triggered

– Specifics left out until tool(s) are
identified

• Pseudocode: a way of writing the
steps of a program using simple
words and symbols, instead of a
specific programming language

Cake recipe

This is a comment. It explains what the dish is, but it is not part of the
recipe.

This dish is a chocolate cake, made with cocoa powder, eggs, flour,
sugar, and butter.

Preheat the oven to 180 degrees Celsius

oven(180)

Grease a cake pan with some butter

pan(butter)

In a large bowl, mix together 200 grams of cocoa powder, 4 eggs, 200
grams of flour, 200 grams of sugar, and 200 grams of butter

bowl(cocoa + eggs + flour + sugar + butter)

Pour the batter into the cake pan and spread it evenly

pan(batter)

Bake the cake in the oven for 25 minutes or until a toothpick inserted
in the center comes out clean

oven(25)

Let the cake cool down on a wire rack

rack(cake)

Enjoy your chocolate cake

output("The chocolate cake is ready")

Pseudocode

SLIDE 29Module Code & Module Title Slide Title

• Coding without a recipe may result in (beginner) programmers:

– Writing code that is hard to read, understand, or modify

– Writing code that does not meet the requirements or specifications of the project

– Writing code that has bugs, errors, or inefficiencies

– Wasting time and resources on debugging or rewriting code

Importance of a plan (Pseudocode)

SLIDE 30Module Code & Module Title Slide Title

• Plan your project(s) before coding

• Helps organize your thoughts, test your ideas, and communicate your goals

• Help programmers learn and improve programming skills: logic, design, and
problem-solving

• A proper plan (pseudocode) helps in:
– Writing code that is clear, concise, and consistent

– Writing code that meets the expectations and needs of the project

– Writing code that is easy to test, debug, or optimize

– Saving time and resources on coding or revising code

Importance of a plan (Pseudocode)

SLIDE 31Module Code & Module Title Slide Title

• Make a sprite change its color: Make a sprite change its color gradually,

or randomly.

• Make a sprite bounce off the edges of the screen: Make a sprite move
around the screen, and bounce off the edges when it touches them. You can
also make the sprite bounce off other sprites, or make sound effects when it
bounces.

• Make a sprite follow the mouse pointer: Make a sprite follow the mouse
pointer wherever it goes. You can also make the sprite change its speed, size,
or costume depending on the distance from the mouse pointer.

So let’s look at our Lab Exercises again

