
VISUAL &
INTERACTIVE

PROGRAMMING
CT803-4-0-OIVIP

Topic 2

Introduction to Computers and Programming

SLIDE 2Module Code & Module Title Slide Title

Define

+ Computer

+ Program

+ Programming language

Differentiate

+ Programming language
generations

Explain

+ Programming environment

TOPIC LEARNING OUTCOMES

SLIDE 3Module Code & Module Title Slide Title

CONTENTS

Definition of computer, programming, and programming language

Programming Language Generations and Types

Integrated Development Environment (IDE)

Graphical Programming

Planning a Computer Program

WHAT IS A COMPUTER?

SLIDE 5Module Code & Module Title Slide Title

A COMPUTER, DEFINED

Machine that processes information and perform tasks

Used in almost every field of human endeavor

 Science

 Engineering

 Business

 The arts

SLIDE 6Module Code & Module Title Slide Title

COMPUTER

A computer is an electronic device, operating under the control of instructions stored
in its own memory

 Accepts data (input),

 processes the data according to specified rules,

 produces information (output), and

 stores the information for future use

Most people are inclined to see the computer as smart

Computers do exactly as humans tell it to do

 Fast, precise

SLIDE 7Module Code & Module Title Slide Title

Tells the computer what to do

Set of instructions that details ordered operations

 Algorithms written in programming language and translated to run on a machine

Perform a specific function(s) or/and achieve specific result(s)

Program, app and software are sometimes used interchangeably

 Writing a recipe is writing exact steps to cook something: program

 A specific and complete recipe can be used to prepare a specific dish: app

 A complete meal prepared with specific recipe(s) using specific kitchen ware: software

COMPUTER PROGRAM

SLIDE 8Module Code & Module Title Slide Title

PROGRAMMING LANGUAGE

Set of statements and syntax rules

 Imagine talking to someone using limited vocabulary and very strict grammar

Implements sequential, conditional and iterative algorithms

Programming is also called coding

 Writing the instruction that the computer will execute

 High-level programming language allows for English-like sentences

The program will eventually be turned into machine language

 Compiler

 Interpreter

SLIDE 9Module Code & Module Title Slide Title

COMPILER

A computer is a machine
 Uses machine language

 Executes a program and produces output

Human programmers write code in human-
like language

A compiler is a program that converts a
program written in a programming
language into machine language

SLIDE 10Module Code & Module Title Slide Title

INTERPRETER

Alternative to a compiler

A compiler converts a program to the language of the computer

The interpreter takes a program one statement at a time

Executes a corresponding set of machine instructions

SLIDE 11Module Code & Module Title Slide Title

COMPILER ALGORITHM

Experienced/
Consumed/

Used by
(human) user

Output

Translated by
compiler/

Executed by
interpreter

Program

Translated by
human

Algorithm

SLIDE 12Module Code & Module Title Slide Title

• 1GL: Machine language

• 2GL: Assembly languageLow level
languages

• 3GL: English-like words

• 4GL: Human-like statements

• 5GL: Natural language/Visual tools

High Level
languages

PROGRAMMING LANGUAGE GENERATIONS

SLIDE 13Module Code & Module Title Slide Title

MACHINE LANGUAGE

Binary codes (Base-2)

Sequence of 1s and 0s
that means something

Simple to represent

Machine-dependent

SLIDE 14Module Code & Module Title Slide Title

ASSEMBLY LANGUAGE

Abbreviations to represent a command

Words and symbols

Easier to understand compared to machine
language
 Still machine-specific

Very different from human language

SLIDE 15Module Code & Module Title Slide Title

HIGH LEVEL LANGUAGES

English-like environment

 Easier to remember and figure out commands

Portable codes

 Similar codes can run on different devices

• Examples of 3rd Generation Languages: C, C++ and Java

• Examples of 4th Generation Languages: Perl, Python and Ruby

• Examples of 5th Generation Languages: Mercury, OPS5, and Prolog

SLIDE 16Module Code & Module Title Slide Title

COMPARISON

‹#›

SLIDE 17Module Code & Module Title Slide Title

Programming is an activity that
requires different assets and facilities

Code editor

Compiler

Debugger

An IDE integrates these assets and
facilities in one interface

Cooking in a kitchen

INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)

SLIDE 18Module Code & Module Title Slide Title

INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)

Simplified online version of an IDE

SLIDE 19Module Code & Module Title Slide Title

INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)

Seems familiar?

SLIDE 20Module Code & Module Title Slide Title

GRAPHICAL PROGRAMMING

What we’ll learn: Creating an interactive application.

Basic concepts involved in creating an interactive application:

Control of flow

 Interactive Animations

 Events

 Event Handling Methods

SLIDE 21Module Code & Module Title Slide Title

CONTROL OF FLOW

• How the sequence of actions in a program is controlled

• What action happens first, what happens next, and so on

Control of flow

• Has a storyline

• Designed sequence planned out by writing program methods

In movie-style programs the sequence of
actions is determined by the programmer

SLIDE 22Module Code & Module Title Slide Title

INTERACTIVE ANIMATION

In interactive programs, the
sequence of actions is
determined at runtime
when the user provides
input

Clicks the mouse

Presses a key on the
keyboard

Some other source of
input

In essence, control of flow is now “in the hands of
the user!”

SLIDE 23Module Code & Module Title Slide Title

EVENTS

Each time the user provides some sort of input, we say an
event is generated.

An event is “something that happens”

SLIDE 24Module Code & Module Title Slide Title

EVENT HANDLING METHODS

An event may

• Trigger a response, or

• Move objects into positions that create some condition (e.g., a collision) that triggers a
response.

A method is called to carry out the response. We call this kind of
method an event handling method.

When an event is linked to a method that performs an action, a
behavior is created.

SLIDE 25Module Code & Module Title Slide Title

Make a sprite move across the
screen: Make the sprite move from
one edge of the screen to the other,
and then back again. You can also
change the sprite's costume,
direction, or size to make it more
interesting.

Event: User clicks on green flag

You will create the event handling
method “when green flag clicked”

Plan your method:

 First, ...

 Then, …

After that, …

REVISITING THE LAB: EXERCISE 1

SLIDE 26Module Code & Module Title Slide Title

WHEN GREEN FLAG CLICKED

Repeat forever:

Sprite moves according to current direction

If sprite touches stage boundary

Sprite changes to opposite direction

(change costume?)

(change size?)

SLIDE 27Module Code & Module Title Slide Title

REVISITING THE LAB: LET’S DO EXERCISE 2!

Make a sprite say something: Make
a sprite say hello, ask the user's
name, and then say something nice
about them.

Let’s start this program by pressing the
space bar

There are TWO (2) events here

 Space bar pressed

 User input obtained

Start planning your methods:

1. When space bar pressed

2. When user input obtained

SLIDE 28Module Code & Module Title Slide Title

PSEUDOCODE

In revisiting Exercises 1 and 2,
we essentially wrote a “recipe”

How a sprite should behave when
an event is triggered

 Specifics left out until tool(s) are
identified

Pseudocode: a way of writing
the steps of a program using
simple words and symbols,
instead of a specific
programming language

Cake recipe

This is a comment. It explains what the dish is, but it is not part of the recipe.
This dish is a chocolate cake, made with cocoa powder, eggs, flour, sugar, and
butter.

Preheat the oven to 180 degrees Celsius
oven(180)

Grease a cake pan with some butter
pan(butter)

In a large bowl, mix together 200 grams of cocoa powder, 4 eggs, 200 grams of
flour, 200 grams of sugar, and 200 grams of butter
bowl(cocoa + eggs + flour + sugar + butter)

Pour the batter into the cake pan and spread it evenly
pan(batter)

Bake the cake in the oven for 25 minutes or until a toothpick inserted in the center
comes out clean
oven(25)

Let the cake cool down on a wire rack
rack(cake)

Enjoy your chocolate cake
output("The chocolate cake is ready")

SLIDE 29Module Code & Module Title Slide Title

IMPORTANCE OF A PLAN (PSEUDOCODE)

Coding without a recipe may result in (beginner) programmers:

Writing code that is hard to read, understand, or modify

Writing code that does not meet the requirements or specifications of the
project

Writing code that has bugs, errors, or inefficiencies

Wasting time and resources on debugging or rewriting code

SLIDE 30Module Code & Module Title Slide Title

IMPORTANCE OF A PLAN (PSEUDOCODE)

Plan your project(s) before coding

Helps organize your thoughts, test your ideas, and communicate
your goals

Help programmers learn and improve programming skills: logic,
design, and problem-solving

A proper plan (pseudocode) helps in:
Writing code that is clear, concise, and consistent
Writing code that meets the expectations and needs of the project
Writing code that is easy to test, debug, or optimize
 Saving time and resources on coding or revising code

SLIDE 31Module Code & Module Title Slide Title

SO LET’S LOOK AT OUR LAB EXERCISES AGAIN

Make a sprite change its color: Make a sprite change its color
gradually, or randomly.
Make a sprite bounce off the edges of the screen: Make a sprite
move around the screen, and bounce off the edges when it touches
them. You can also make the sprite bounce off other sprites, or
make sound effects when it bounces.

Make a sprite follow the mouse pointer: Make a sprite follow the
mouse pointer wherever it goes. You can also make the sprite
change its speed, size, or costume depending on the distance from
the mouse pointer.

