
Introduction to Visual and Interactive
Programming

CT803-4-0-OIVIP

Topic 2
Computational Thinking and Program Planning

SLIDE 2Module Code & Module Title Slide Title

Design

+ Problem solving using
Computational Thinking

Define

+ Algorithm

Formulate

+ Steps to Solve
Problems

Topic learning outcomes

SLIDE 3Module Code & Module Title Slide Title

• Computational Thinking

– Definition & Application

– The Key Dimensions and Principles of Computational Thinking

• Problem-solving

• Algorithm
– Wireframing

– Pseudocode

– Flowchart

– Storyboard

Contents

SLIDE 4Module Code & Module Title Slide Title

• Scenario: Your room is dirty, and cleaning it daily is a chore (you don’t want
to do it!). You want to build a robot instead, that will do the cleaning

• How will you tell it what to do?

• Will your instructions be random?

• Would you have a clear plan?

• Think like how a programmer would!

Everyday Problems..

SLIDE 5Module Code & Module Title Slide Title

• Not necessarily about coding, computers, or robots to clean our room

• Way of approaching problems
• Emphasizes logic, structure, and solving problems step-by-step

• Toolbox of skills that can be applied to all sorts of challenges

• Principles of computational thinking:
• Decomposition

• Pattern recognition

• Algorithms

• Abstraction

+ Automation

Computational Thinking

SLIDE 6Module Code & Module Title Slide Title

• To think computationally through a difficult problem, task, or activity, you should be
familiar with the following Five Principles of Computational Thinking

Principles of Computational Thinking

Computational
Thinking

Decomposition

•Break down data
and problems into

smaller parts

Pattern
Recognition

•Observe patterns
and trends in data

Algorithms

•Determine what
steps are

needed to solve
a problem

Abstraction

•Remove details
and extract

relevant
information

Automation

•Use of technological tools to
mechanize problem

solutions/perform tasks with
reduced human assistance.

SLIDE 7Module Code & Module Title Slide Title

This involves breaking down a complex task into smaller, and more
manageable components.

This could be achieved through

Analyzing a problem: breaking a problem into parts

Synthesizing a problem: combining solutions to small subproblems to solve the
large problem.

Parallelization: solving subproblems simultaneously

Sequential: solving subproblems in specific order.

Example: do a research on the different organs in order to understand how
the human body digests food.

Decomposition – break the problem into a smaller
parts

‹#›

SLIDE 8Module Code & Module Title Slide Title

This involves identifying and defining trends or patterns within a
problem.

Patterns make it easier to see the relationships between different parts
of a larger problem and to decide what actions can and must be taken to
address it.

Example: classify animal based on their characteristics and articulate
common characteristics for the groupings.

Pattern Recognition – Observe patterns and trends in data

‹#›

SLIDE 9Module Code & Module Title Slide Title

This involves the development of step-by-step rules or instructions for solving a
problem or completing a task.

The instruction can be used again to answer similar problems.

The instructions must be precise and unambiguous.

Examples
Following a recipe or direction

Getting dressed.

Algorithm Design - Determine what steps are needed to
solve a problem

‹#›

SLIDE 10Module Code & Module Title Slide Title

Examples :

Learning about physics using a ball and ramp
Experimenting and graphing results in an

acceleration lab.
Developing laws and theorems by looking at

similar formulas and equations.

It aids in the development of problem-related models that can handle large amounts and ranges of data.

This involves identification of particular similarities and differences between comparable problems to
work towards a solution.

Abstraction: Remove details and extract relevant information

SLIDE 11Module Code & Module Title Slide Title

Abstraction – Remove details and extract relevant
information

‹#›

Question: Is it
possible to learn to
drive a car without
knowing how all
the components
work?

Example:

• Draw a cat.

• The image must be
representative of all
types of cats:
• Ears, eyes and tail

• Relevant characteristics

• Optional details:
• Fur, nose, whiskers

• Unnecessary details
• Sound, favourite food

• Can be filtered out

SLIDE 12Module Code & Module Title Slide Title

This involves the use of technological tools to mechanize problem
solutions/perform tasks with reduced human assistance.

The principle of automation can be
applied to tasks that are:

Repetitive: This include tedious tasks like copy and paste, data entry, and
switching between tabs

Fragile: This are tasks or activities that involve a high level of human error such
as typos, forgotten checklists or coordinated changes steps; and

Timely: This include recurring tasks or activities such as reminders and
automatic/instant responses.

Automation - Use of technological tools to mechanize problem
solutions

SLIDE 13Module Code & Module Title Slide Title

Computational Thinking

Involves THREE (3) Key Dimensions

Computational Concepts

Computational Practices

Computational Perspectives

SLIDE 14Module Code & Module Title Slide Title

Concepts Description

Data Storing, retrieving and updating

Operators Support for mathematical and logical expressions

Events One thing causing another thing to happen

Parallelism Making things happen at the same time

Sequence Identifying a series of steps for a task.

Conditionals Making decisions based on conditions

Loops Running the same sequence multiple times

Computational Concepts

‹#›

SLIDE 15Module Code & Module Title Slide Title

Practices Description

Experimenting and Iterating
Developing a little bit, then trying it out, then
developing more.
https://player.vimeo.com/video/106046863

Testing and debugging
Making sure things work, finding and solving problems
when they arise.
https://player.vimeo.com/video/106046866

Reusing and remixing
Making something by building on existing projects or
ideas.
https://vimeo.com/106433597

Abstracting and modularizing
Exploring connection between the whole and the
parts.
https://vimeo.com/106438541

Computational Practices

‹#›

https://player.vimeo.com/video/106046863
https://player.vimeo.com/video/106046866
https://vimeo.com/106433597
https://vimeo.com/106438541

SLIDE 16Module Code & Module Title Slide Title

Perspectives Description

Expressing Realizing that computation is a medium of creation, “I can create.”

Connecting
Recognizing the power of creating with and for others, “I can do different things
when I have access to others.”

Questioning
Feeling empowered to ask questions about the world. “I can (use computation to)
ask questions to make sense of (computational things in) the world.”

Exploring

Understanding how one thing can be done in many ways

“I know how I like to do {this}, how do other people like to do it? Why is that

better for them?”

Computational Perspectives

‹#›

SLIDE 17Module Code & Module Title Slide Title

It moves students beyond technology literacy

It creates problem solvers instead of software technicians

It emphasizes creating knowledge rather than using information

It presents endless possibilities for creatively solving problems

It enhances the problem-solving techniques you already have

Why is it important?

SLIDE 18Module Code & Module Title Slide Title

• Steps to solve a problem (a recipe)

• Key components:
• Input

• Process

• Output

• Let’s look at a recipe of making a sandwich

Algorithm

SLIDE 19Module Code & Module Title Slide Title

• Bread: Two slices of your favorite bread

• White, wheat, sourdough, multigrain - the choice is yours!

• Spread: The delicious foundation of flavor

• Butter, peanut butter, hummus, mayo, mustard, the possibilities are endless!

• Fillings: This is where things get exciting!

• Sliced cheese, ham, turkey, avocado, tomato, cucumber, sprouts - let your imagination
(and fridge) run wild!

Input: what is going to be put inside (ingredients)

SLIDE 20Module Code & Module Title Slide Title

• Prepare the canvas: Place one bread slice on your plate. This is your flavor
stage!

• Spread the love: Using your knife, evenly coat the bread with your chosen
spread. Think of it as priming the flavor pump.

• Layering the goodness: Add your desired fillings. Go for a classic combo or
invent your own masterpiece!

• Top it off: Place the second bread slice gently on top, pressing down lightly to
seal in all that deliciousness.

• The final cut (optional): If you're feeling fancy, slice your sandwich in half
diagonally or into triangles. Presentation matters!

Process: what are the steps to produce the output

SLIDE 21Module Code & Module Title Slide Title

• Of course, a magnificent sandwich!

But wait! Outputs may differ:

• Control structure

• Conditionals:
if spread = peanut butter

if filling = none → Output would be a peanut butter sandwich!

• Loop:
for i = 1 to 100

spread mayo → Output would be a really sloppy sandwich!

Output: what will the user experience at the end

SLIDE 22Module Code & Module Title Slide Title

Wireframe: quick sketch of main steps (summary)

Gather

ingredients

Prepare

sandwich
Sandwich done.

Enjoy!

SLIDE 23Module Code & Module Title Slide Title

• Place one slice of bread on plate

• Spread butter evenly on slice of bread

• Place topping on buttered bread until satisfied

• Place one slice of bread on top of topping with

• Cut sandwich diagonally in half

Pseudocode: detailed recipe

SLIDE 24Module Code & Module Title Slide Title

Flowchart: steps in diagram
form (like a map)

SLIDE 25Module Code & Module Title Slide Title

• Panel 1: Two excited kids gather ingredients.

• Panel 2: They carefully spread butter on one bread slice.

• Panel 3: They unleash their creativity with toppings like chopped onions, beef
brisket, and pickles.

• Panel 4: They carefully assemble the sandwich masterpiece.

• Panel 5: Big smiles and thumbs up as they take the first bite!

Storyboard: steps in pictures (like a comic book)

SLIDE 26Module Code & Module Title Slide Title

• Create a guessing game: the sprite will greet the user and asks the
user to guess a random number between 1 and 100, and the program
gives feedback on whether the guess is too high, too low, or correct.
The user can only guess __ number of times (decided by the
programmer) so the program needs to keep track of how many
guesses the user has made. The game ends when the user guesses the
correct number or runs out of guesses.

Recap: Week 2 Exercise

SLIDE 27Module Code & Module Title Slide Title

Wireframe: quick sketch of main steps (summary)

Greet, explain

game, ask for

number

• Too high/low

/correct (end)

• Counter update

Out of guesses!

(end)

SLIDE 28Module Code & Module Title Slide Title

When green flag clicked
Greet the user and explain the game

randomNum = random number between 1 and 100

userGuess = 101; loopCount = 1

while loopCount <= 5: # user can only guess up to 5 times

Ask for guess no. loopCount and store answer in userGuess

if userGuess > randomNum:

Display "Too high!" message

if userGuess < randomNum :

Display "Too low!" message

if userGuess == randomNum :

Display "Congratulations! You guessed the number!" and end the game

increase loopCount by 1

if userGuess != randomNum: Display "Sorry, you ran out of guesses!"

End the program

Pseudocode: detailed recipe

SLIDE 29Module Code & Module Title Slide Title

Flowchart: steps in
diagram form (like a map)

SLIDE 30Module Code & Module Title Slide Title

Scene Description

1 A sprite pops up and says, "Welcome! Guess a number between 1 and 100!"

2 The user types a number into a text box.

3 The sprite analyzes the guess.

4a The sprite frowns and says, "Too high! Go lower."

4b The sprite looks surprised and says, "Too low! Aim higher."

4c The sprite cheers and says, "You got it! Play again?"

5 The counter displays how many guesses the user has left.

6 The sprite shakes its head and says, "Out of chances! Play again?"

Storyboard: steps in pictures (like a comic book)

SLIDE 31Module Code & Module Title Slide Title

• Your pseudocode may (or may
not) be similar to the instructor’s
(mine!). Create a flowchart to
represent your pseudocode in a
logical diagram. Then, create a
storyboard for your number
guessing program

Exercise!

