
Introduction to Visual and Interactive
Programming

CT803-4-0-OIVIP

Topic 2+
Problem solving, Algorithm and Debugging

SLIDE 2Module Code & Module Title Slide Title

Topic Learning Outcomes

At the end of this topic, you
should be able to:
•Define algorithm

SLIDE 3Module Code & Module Title Slide Title

Contents & Structure

What is a problem? – Type of problems

Problem solving in everyday life

What is problem solving strategies

Algorithm

SLIDE 4Module Code & Module Title Slide Title

• Computers everywhere

Ovens, washing machines and toys. Banks and Hospitals,
Transport Reservations, Signaling Aircraft and industrial

plant controllers, Missiles and satellites, and many
more.

Introduction

‹#›

SLIDE 5Module Code & Module Title Slide Title

• A computer can
– receive information. → input
– produce information. → output
– perform arithmetic.
– assign a value to a piece of data.
– compare two pieces of information
` and select one of two alternative actions.
– repeat a group of actions.

Six Basic Computer Operations

process

SLIDE 6Module Code & Module Title Slide Title

What is Problem ?

A Problem is a state of difficulty that need to be resolved

While solving a problem there is a desire to attain some specific goal .

Here is some examples we face in day-to-day life
can be important or can be least importance .

Will I get proper transport to go to my workspace ?

Should I wear shoes today ?
Should I go to a movies ?
Which Cell phone should I buy?

General Problem-Solving Concepts : Problem
Solving in everyday life

‹#›

SLIDE 7Module Code & Module Title Slide Title

Problem Based on algorithmic
solution :

Sequence of instruction .
For solving some problem , series of actions are
taken to reach the solution.

Problem based on heuristic
Solutions :

The Solution that can not reached through direct set
of steps are called heuristic solutions .
With heuristic solution problem solver must follow
six steps of problem solving for more than once .

Types of Problem

‹#›

SLIDE 8Module Code & Module Title Slide Title

Solution : Instruction that must be followed to produce the best result .

Results: It is an outcome or the completed computer -assisted answer .

Program : Computer program are set of instructions executed to obtain solution to
certain problem. These programs are written in some specific programming language.

Computer deal with the problem having algorithmic solution. The field of computer that
deal with solving the heuristic problems is called artificial intelligence .

Problem solving with computer

‹#›

SLIDE 9Module Code & Module Title Slide Title

We do not understand the problem correctly .

Sometimes we do not define the problem correctly or adequately

People get afraid of taking decisions while solving the problems

Sometimes the list of alternatives is incomplete .

The sequence of solutions to the problems is not logical many times .

When solving problem on the computer , one of the most difficult tasks for the problem solver is writing
the instructions

Difficulties with problem solving

‹#›

SLIDE 10Module Code & Module Title Slide Title

Steps to Developing a Program

‹#›

Document and maintain Document and maintain the program.

Run Run the program on the computer.

Code Code the algorithm into a specific programming language.

Test Test the algorithm for correctness.

Develop Develop the outline into an algorithm.

Outline Outline the solution.

Define Define the problem.

SLIDE 11Module Code & Module Title Slide Title

1. Define The Problem

‹#›

The above three items can be presented in a defining
diagram.- IPO Chart

Divide the problem into THREE separate components

Inputs: a list of source data
provided to the problem

Outputs: a list of the
outputs required

Processing: a list of actions
needed to produce the

required outputs

SLIDE 12Module Code & Module Title Slide Title

Understand

Thoroughly understand the
problem

Understand

Understand problem
requirements
• Does program require user interaction?
• Does program manipulate data?
• What is the output?
• Are all possible circumstances handled?

Divide

If the problem is complex, divide
it into subproblems
• Analyze each subproblem as above

Analyse the problem

‹#›

SLIDE 13Module Code & Module Title Slide Title

Analyse the problem

Purpose:

To describe in detail a solution to a problem and

information needed in solving the problem.

How

• Study and understand the problem

• Identify

• The needed input.

• The required output.

• The needed process.

• For example: scientific formula or

hypothesis.

SLIDE 14Module Code & Module Title Slide Title

Defining Diagram

Input Processing Output

SLIDE 15Module Code & Module Title Slide Title

Analyse the problem

Problem 1
Write a program that will calculate and
display the average of 3 numbers

Input Process Output

num1, num2 and

num3 average =
𝒏𝒖𝒎𝟏+𝒏𝒖𝒎𝟐+𝒏𝒖𝒎𝟑

𝟑
average

SLIDE 16Module Code & Module Title Slide Title

Analyse the problem

INPUT PROCESS OUTPUT

num1 num2 num3

7 21 32

average =
𝑛𝑢𝑚1+𝑛𝑢𝑚2+𝑛𝑢𝑚3

3

average =
7+21+32

3

average = 20

SLIDE 17Module Code & Module Title Slide Title

Analyse the problem

Problem 2
Write a program that will convert length
in kilometer to meter and centimeter

Input Process Output

kmlength mlength = kmlength * 1000

cmlength = kmlength * 100000

mlength and

cmlength

SLIDE 18Module Code & Module Title Slide Title

Analyse the problems

INPUT PROCESS OUTPUT

kmlength

20

mlength = kmlength * 1000

cmlength = kmlength *

100000
mlength = 20 000

cmlength = 2 000 000

mlength = 20 * 1000

cmlength = 20 * 100000

SLIDE 19Module Code & Module Title Slide Title

2. Outline The Solution

During this stage, certain details are identified from
the problem by analyzing it further, such as:
• major processing tasks involved.
• major subtasks (if any)
• major control structures.
• major variables
• mainline logic

SLIDE 20Module Code & Module Title Slide Title

• Ask questions!
– What do I know about the problem?
– What is the information that I have to process in order to find the solution?
– What does the solution look like?
– What sort of special cases exist?
– How will I recognize that I have found the solution?

Strategies

‹#›

SLIDE 21Module Code & Module Title Slide Title

3. Develop The Algorithm

‹#›

A detailed step by step algorithm is written out.

Often use one of three tools:
Pseudocode

Flowcharts

Nassi-Schneiderman diagrams – will not be covered in this
module

SLIDE 22Module Code & Module Title Slide Title ‹#›

Before a computer can perform a task, it must
have an algorithm that tells it what to do.

SLIDE 23Module Code & Module Title Slide Title

• Identifying the steps involved in solving a problem.
– What are the steps involved with making a cup of tea?
– What are the steps involved in the calculation 200÷12?
– What are the steps involved in checking if a player has hit a target in a game?
– What are the steps involved in getting dressed for school?

Algorithmic thinking definition

‹#›

SLIDE 24Module Code & Module Title Slide Title

What is Algorithm?

‹#›

Algorithms are the practical application of algorithmic thinking.

Algorithms are simply steps/procedures used to get the intended result.

Algorithms state the steps required to get to the desired result.

Creating algorithms is all about thinking logically and so to think computationally is to think in
a structured, organized and logical manner.

Algorithms are vital to programming. Without one, coding a solution is almost impossible…but
with one, coding becomes an easy job (if you know your programming syntax that is!)

SLIDE 25Module Code & Module Title Slide Title

Search engines such as Bing or Google use algorithms to put a set of search results
into order,

Your Facebook news feed is derived from your friends’ status updates and other
activity, but it only shows that activity which the algorithm thinks you’ll be most
interested in seeing.

The recommendations you get from Amazon, Netflix and eBay are algorithmically
generated, based in part on what other people are interested in.

Algorithm in a real world

‹#›

SLIDE 26Module Code & Module Title Slide Title

Algorithms are independent of any language.

Writing an algorithm in a specific language:

Too time consuming

Pointless – could just code

Cannot be taken by a programmer using a different language

Too complex – need knowledge of syntax (code specific to a language)

Writing an algorithm in everyday language:
Too time consuming

Open to interpretation – thus resulting in different outcomes

So, we use Flowcharts and pseudocode to write algorithms so that they are concise, accurate and easy to
understand so that a programmer of any language could understand the steps required to solve a task

Writing Algorithms

‹#›

SLIDE 27Module Code & Module Title Slide Title

Program Design

Problem 1
Write a program that will calculate and
display the average of 3 numbers

ALGORITHM

SLIDE 28Module Code & Module Title Slide Title

Program Design

ALGORITHM

Problem 2
Write a program that will convert length
in kilometer to meter and centimeter

SLIDE 29Module Code & Module Title Slide Title

Pseudo code - About

‹#›

No standard pseudocode.

A pseudo code is an informal way to describe a program

Pseudo code is not a computer program

Pseudo code can use natural language or compact mathematical notation

It is a rough sketch of the actual program

SLIDE 30Module Code & Module Title Slide Title

Pseudo code commonly borrows its syntax from popular programming languages like C, Fortran, Pascal, Java, Python etc.

Pseudo code vary in style from author to author

We do not have to follow any strict syntax like computer programming language

No standard for pseudo code syntax exists

Although there are no STRICT STANDARDS for pseudocode there are only really a few keywords that you need.

Pseudo-code has keywords such as IF, ELSE and FOR and so mimics a programming language and therefore the logic is easy to follow and easy to turn into code.

Algorithms can be written in ‘everyday English’ as well as a flowchart

Pseudo code - Syntax

‹#›

SLIDE 31Module Code & Module Title Slide Title

Pseudo-code Start and End
“Key Words”

• Pseudocode begin with a START and ends with END
• The algorithm goes in between.
• You will need to DECOMPOSE the problem set in the question to work out what

comes in between
• Pseudocode and their statements

START

……………………………

END

‹#›

SLIDE 32Module Code & Module Title Slide Title

Pseudo-code Input / Output “Key
Words”

At times, your program will most certainly ask the user for inputs and output values too.

Inputs and Outputs (like “Name?” or “…display age”) are indicated using the following words.

Usually, a programmer will choose one and stick with it throughout their algorithm.

INPUTS:
READ

OBTAIN
GET
INPUT

OUTPUTS:
PRINT

DISPLAY
SHOW
OUTPUT

‹#›

SLIDE 33Module Code & Module Title Slide Title

Pseudo-code Process “Key Words”

Example:

Compute Calculate Determine Increment; ++ or += Decrement; -- or -=

You don’t have to always use these words, for example the logic statements such as “Add 1 to x” or “append x to List” are fine too.

Simple processes will often use the key words shown below (like “CALCULATE X*2” or “INCREMENT X by 1)”

Most of the time pseudocode will outline the logical sequence of instructions to be carried out.

‹#›

SLIDE 34Module Code & Module Title Slide Title

Pseudo-code More Keywords

‹#›

•At times, your program will assign values to variables.
•In pseudocode this is done using the following key words.
•SET

Variable Assignment “Key Words”

•At times, your program will be programmed to make a decision based on certain conditions.
•Decisions (like “IF X = 3, THEN …”) are shown using, the following key words.
•IF
•THEN
•ELSE
•ELSE-IF
•ENDIF

Decision/Selection “Key Words”

•Programs will often loop in places while certain conditions occur (infinitely) or for a set number of times (finitely).
•Loops use the following key words:
•FOR
•WHILE / ENDWHILE
•REPEAT / UNTIL

Loops / Iterations “Key Words”

SLIDE 35Module Code & Module Title Slide Title

Program Design – Pseudo-code

Pseudo code

Problem 1
Write a program that will calculate and
display the average of 3 numbers

Start
Ask num1,num2,num3
Set average to (num1+num2+num3)/3
say average
End

SLIDE 36Module Code & Module Title Slide Title

Program Design – Pseudo-code

Pseudo code Start
Set mlength to 0
Set cmlength to 0
Ask kmlength
mlength = kmlength * 1000
cmlength = kmlength * 100000
output mlength, cmlength
End

Problem 2
Write a program that will convert length
in kilometer to meter and centimeter

SLIDE 37Module Code & Module Title Slide Title

Program Design – Pseudo-code

• Example 3:
– A central heating system will try to keep the temperature between 2 values (19 and 21)
– If the temperature falls below 19 It will turn the heating system on
– If the temperature rises above 21 it will switch the heating system off.

‹#›

SLIDE 38Module Code & Module Title Slide Title

Program Design - Flowchart

‹#›

Flowchart is a pictorial way to express algorithm or process.

Visual representation of the logic of a program

Limited range of symbols to describe processes

Arrows to show the order of instructions

Easier to follow and identify issues than in pseudocode.

So, instead of writing down the algorithm in some programming language like Snap!, C, C++, Java, C#, PHP, Python,
Ruby etc. Use flowchart to express the algorithm which gives us a general view about the algorithm.

Flowchart as the name indicates, is about the flow of execution of our algorithm.

SLIDE 39Module Code & Module Title Slide Title

Flowchart and their symbols

• Start and Stop Symbols
– All flow charts begin with a Start Symbol and at the end of the flow chart (or at various end points

of the chart) we place a Stop Symbol.
– There are drawn as a rectangle with curved ends

‹#›

SLIDE 40Module Code & Module Title Slide Title

Flowchart and their symbols

• Process Symbols
– Most of the time a flow chart will demonstrate the sequence of instructions to be carried out.
– Simple processes (like “Add 1 to x” or “append x to List”) are shown using a standard rectangle.

‹#›

SLIDE 41Module Code & Module Title Slide Title

Flowchart and their symbols

• Input / Output Symbols
– At times, your program will most certainly ask the user for inputs and output values too.
– Inputs and Outputs (like “Name?” or “…display age”) are shown using a parallelogram.

‹#›

SLIDE 42Module Code & Module Title Slide Title

Flowchart and their symbols

• Decision Symbols
– At times your program will be programmed to make a decision based on certain conditions.
– Decisions (like “IF X = 3” or “While Y > 3”) are shown using a diamond.

‹#›

SLIDE 43Module Code & Module Title Slide Title

Flowchart and their symbols

• Flow Symbols
– Show direction of flow.

‹#›

SLIDE 44Module Code & Module Title Slide Title

Flowchart is generally drawn from top to bottom

All boxes of flowchart must be connected with arrow.

All flowchart start with a Terminal or Process symbol.

Decision symbol have 2 exit points, one for YES (TRUE) and another for NO (FALSE).

Flowchart - Rules

‹#›

SLIDE 45Module Code & Module Title Slide Title

Flowchart

Problem 1

Flowchart
Start

Input num1,num2,num3

average = (num1+num2+num3)/3

Output average

End

SLIDE 46Module Code & Module Title Slide Title

Flowchart

Problem 2
Flowchart

Start

mlength = 0, cmlength = 0

mlength = kmlength * 1000

Input kmlength

cmlength = kmlength * 100000

Output mlength,

cmlength

End

SLIDE 47Module Code & Module Title Slide Title

4. Test Algorithm For Correctness

One of the most important in the development of a program, and
yet it is the step most often forgotten.

The main purpose of desk checking the algorithm is to identify
major logic errors early, so that they may be easily corrected.

‹#›

SLIDE 48Module Code & Module Title Slide Title

5. Code the Algorithm

Code the algorithm
into a specific
programming

language.

SLIDE 49Module Code & Module Title Slide Title

6. Run the Program

Use a program compiler or
interpreter and programmer-

designed test data to machine-
test the code for both syntax

and logic errors.

SLIDE 50Module Code & Module Title Slide Title

Testing and Debugging

Input

sample of

data set

Executing

Program

Output

(functioning

well or error

discovered)

Definition

Using a set of data to discover

errors and to ensure accuracy of

the program.

Testing Process

Diagram indicates the

process of testing.

SLIDE 51Module Code & Module Title Slide Title

Testing and Debugging

• Assume that a program to find the average of 3 numbers has
been coded.

• Then, execute the program.
• Using a few numbers, test the program to verify whether the

result is as expected

Testing 2:

Testing 1:

Input: 4, 5, 8

Input: 7, 8, 6

From the output,

has the program

produced the

expected result?

T E S T I N G

SLIDE 52Module Code & Module Title Slide Title

Testing and Debugging

D E B U G G I N G

Definition

• An error is known as bug

• Debugging is a process of identifying and correcting

errors.

• There are 3 types of error:

• Syntax error - (grammatical rule violations)

• Logic error – faulty logic

• Runtime error – causes errors during execution.

SLIDE 53Module Code & Module Title Slide Title

Testing and Debugging

Syntax error

(grammatical

error)

• Occurs when the rules of
programming language are not
applied.

• Correction is done during the
program coding.

• The bug can be traced during the
compilation process (i.e. when
running the compiler on the
program)

• Also known as compile-time error
• Must be corrected before

executing and testing the program

Logic error

• Logic error is an error that occurs
because logical statement in
program is wrong

• Cannot be traced by compiler.
• Corrected during the problem

solving process

• Also known as run time error.
• Example output for average is 4,

but when it runs, the output is 2.
Why this is happen?

SLIDE 54Module Code & Module Title Slide Title

Document and Maintain the Program

‹#›

• should not be listed as the last step
• Really an ongoing task from the initial definition of the problem to

the final test result.
• Involves both external documentation (such as hierarchy charts, the

solution algorithm, and test data results) and internal documentation
which may have been coded in the program.

Program documentation

Program maintenance refers to changes which may
need to be made to a program throughout its life.

SLIDE 55Module Code & Module Title Slide Title

Maintenance

DEFINITION

The changes may involve simple changes such as error correcting

Activity that verifies whether the operational system is performing as planned or

an activity to modify the system to meet the current requirement.

The process of changing a system after it has been applied to maintain its

ability.

SLIDE 56Module Code & Module Title Slide Title

Maintenance

Adding needs to new system.

Adjustment

For example: An old system

cannot update the new data.

Repair

Update the database.

Updating

Test the ability of the system.

Testing

Access data time. Example,

time to save, print and others.

Measurement

Replace the old system to new

system.

Replacement

How to do

maintenance?

SLIDE 57Module Code & Module Title Slide Title

• Design the pseudocode and flowchart that
– Reads two numbers and multiplies them together and print out the result.
– To find the average of 3 numbers
– Tells a user that the number they entered is not a 5 or a 6.
– Performs the following:

• Ask a user to enter a number.
• If the number is between 0 and 10, write the word blue.
• If the number is between 10 and 20, write the word red.
• if the number is between 20 and 30, write the word green.
• If it is any other number, write that it is not a correct color option.

Exercise

