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▪ Random slopes
▪ Explanation of random intercepts and slopes
▪ Specification of random slope models
▪ Estimation

Contents & Structure 
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• Discuss the different between multiple linear regression 
and random intercept model.

Recap:
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•At the end of this topic, You should be able to
▪ Discuss the general case of HLM.

▪ Interpret the output of HLM.

Learning Outcomes
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• If you have mastered this topic, you should be able to use the 

following terms correctly in your assignments and exams:

• Random slope model

• Hierarchical Linear Model 

Key Terms You Must Be Able To Use
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▪ Discuss the general case of HLM.

Leaning Outcome 1 
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• In the previous topic, the simpler case of the 
hierarchical linear model (HLM) was treated, in which 
only intercepts are assumed to be random.

• In the more general case, slopes may also be random.
• In a study of students within schools, for example, the 

effect of the pupil’s IQ or SES on scholastic 
performance could differ between schools, i.e. the 
slope can be different.

Introduction
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• In the random intercept model of Topic 4, the groups differ 
with respect to the average value of the dependent 
variable: the only random group effect is the random 
intercept.

• But the relation between explanatory and dependent 
variables can differ between groups in more ways.

Random Slopes
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• For example, in the field of education (nesting structure: 
students within classrooms), it is possible that the effect of 
socio-economic status of students on their scholastic 
achievement is stronger than in others.

• it is possible that some subjects progress faster than 
others.
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• In the hierarchical linear model (HLM), it is modeled by 
random slopes.

• a model with group-specific regressions of Y on one level-
one variable X only, like model (4.3) but without the effect 
of Z

• 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝜷𝟏𝒋𝑥𝑖𝑗 + 𝑅𝑖𝑗 −−−(5.1)

• The intercept 𝛽0𝑗 as well as the regression coefficients, or 
slopes, 𝛽1𝑗 are group-dependent.
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• These group-dependent coefficients can be split into an 
average coefficient and the group-dependent deviation.

• 𝛽0𝑗 = 𝛾00 + 𝑈0𝑗 , 𝛽1𝑗 = 𝛾10 + 𝑈1𝑗 −−−−−(5.2)

• Substitution leads to the model
• 𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑥𝑖𝑗 + 𝑈0𝑗 + 𝑈1𝑗𝑥𝑖𝑗 + 𝑅𝑖𝑗 ---(5.3) 
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• It is assumed that the level-two residuals 𝑈0𝑗 and 𝑈1𝑗 as 
well as the level-one residuals 𝑅𝑖𝑗 have mean 0, given the 
values of the explanatory variable X.

• Thus, 𝛾10 is the average regression coefficient just as 𝛾00 is 
the average intercept.
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• The first part of (5.3), 𝛾00 + 𝛾10𝑥𝑖𝑗 is called the fixed part 
of the model.

• The second part, 𝑈0𝑗 + 𝑈1𝑗𝑥𝑖𝑗 + 𝑅𝑖𝑗 , is called the random 
part.

• The term 𝑈1𝑗𝑥𝑖𝑗 can be regarded as a random interaction 
between group and X.

• This model implies that the groups are characterized by 
two random effects: their intercept and their slope.  
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• These are called latent variables, meaning that they are not 
directly observed but play a role “behind the scenes” in 
producing the observed variables.

• The variance of the level-one residuals 𝑅𝑖𝑗 is again 
denoted 𝜎2; the variances and covariance of the level-two 
residuals (𝑈𝑜𝑗 , 𝑈1𝑗) are denoted as follows:  
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• 𝑐𝑜𝑣 𝑈0𝑗 , 𝑈1𝑗 = 𝜏01 --------------- (5.4)
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• Model (5.3) implies not only that individuals within the 
same group have correlated Y-values, but also that 
this correlation as well as the variance of Y are 
dependent on the value of X.

• For example, in a study of the effect of socio-
economic status (SES) on scholastic performance (Y), 
we have schools which do not differ in their effect on 
high-SES children, but do differ in the effect of low 
SES on Y(eg. because teacher expectancy effect). 

Heteroscedasticity
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• Then for children from a high-SES background it does 
not matter which school they go to, but for children 
from a low-SES background it does.

• The school then adds a component of variance for the 
low-SES children, but not for the high-SES children: as 
a consequence, the variance of Y (for a random child at 
a random school) will be larger for the former than for 
the latter children.   
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• This example shows that model (5.3) implies that the 
variance of Y, given the value x on X, depends on x.

• This is called heteroscedasticity in statistical literature.  
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• An expression for the variance of (5.3) is obtained as the 
sum of the variances of the random variables involved plus 
a term depending on the covariance between 𝑈0𝑗 and 𝑈1𝑗
(the other random variables are uncorrelated).

• Here we also use the independence  between the level-
one residual 𝑅𝑖𝑗 and the level-two residuals (𝑈0𝑗 , 𝑈1𝑗).
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• From (5.3) and (5.4), we obtain the result

• Similarly, for two different individuals (i and 𝑖 ,, with 𝑖 ≠ 𝑖 ,) 
in the same group,

• Formula (5.5) implies that the residual variance of Y is 
minimal for 𝑥𝑖𝑗 =

−𝜏01

𝜏11
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• All of the preceding discussion implies that the group 
effects depend on x: according to (5.3), this effect is given 
by 𝑈0𝑗 + 𝑈1𝑗𝑥

• This is illustrated by Figure 5.1, a hypothetical graph of 
the regression of school achievement (Y) on intelligence 
(X).
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• It is clear that there are slope differences between the 
three schools.

• Looking at the 𝑌(1) − 𝑎𝑥𝑖𝑠, there are almost no intercept 
differences between the schools.

• But if we add a value 10 to each intelligence score x, then 
the Y-axis is shifted to the left by 10 units: the 𝑌(2) − axis
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• Now, school 3 is the best, school 1 the worst: there are 
strong intercept differences.

• If we had subtracted 10 from the x-scores, we would 
have obtained the 𝑌(3) − 𝑎𝑥𝑖𝑠, again with intercept 
differences but now in reverse order.

• This implies that the intercept variance 𝜏00, as well as 
the intercept-by-slope covariance 𝜏01, depend on the 
origin (0-value) for the X-variable.
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• from this, we can learn two things:
• (1) since the origin of most variables in the social sciences 

is arbitrary, in random slope models the intercept-by-slope 
covariance should be a free parameter estimated from the 
data, and not a priori constrained to the value 0 (i.e. left 
out of the model) 
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• (2) In random slope models we should be careful with the 
interpretation of the intercept variance and the intercept-
by-slope covariance, since the intercept refers to an 
individual with x=0.

• For the interpretation of these parameters it is helpful to 
define the scale for X so that x=0 has an interpretable 
meaning, preferably as a reference situation 
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• In nesting structures of individuals within groups, it is 
often convenient to let x=0 correspond to the overall mean 
of the population or the sample – for example, if X is IQ at 
the conventional scale with mean 100, it is advisable to 
subtract 100 to obtain a population mean of 0.  
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• For the interpretation of the variance of  random slopes,     
, it is also illuminating to take the average slope, 𝛾10, into 
consideration.

• Model (5.3) implies that the regression coefficient, or 
slope, for group j is 𝛾10 + 𝑈1𝑗.

• This is a normally distributed random variable with mean 
𝛾10 and standard deviation 

Interpretation of random slope variances 
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• Since about 95% of the probability of a normal distribution 
is within two standard deviations from the mean, it follows 
that approximately 95% of the groups have slopes 
between 𝛾10 − 2𝜏1 and 𝛾10 + 2𝜏1

• Conversely, about 2.5% of the groups have a slope less 
than 𝛾10 − 2𝜏1 and 2.5% have a slope steeper than 𝛾10 +
2𝜏1. 
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▪ Interpret the output of HLM.

Leaning Outcome 2
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• We continue our study of the effect of IQ on a 
language test score.

• Recall that IQ is here on a scale with mean 0 and its 
standard deviation in this data set is 2.04.

• A random slope of IQ is added to the model, that is, 
the effect of IQ is allowed to differ between classes.

• The model is an extension of model (5.3): a fixed 
effect for the class average on IQ is added.

Example 5.1 A random slope for IQ
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• The model reads 
• 𝑌𝑖𝑗 = 𝛾00 + 𝛾10𝑥𝑖𝑗 + 𝛾01 ҧ𝑥.𝑗 + 𝑈0𝑗 + 𝑈1𝑗𝑥𝑖𝑗 + 𝑅𝑖𝑗

• The result can be read from Table 5.1.
• Note that  the “Level-two random part” heading refers 

to the random intercept and random slope which are 
random effects associated with the level-two units 
(the class), but that the variable that has the random 
slope, IQ, is itself a level-one variable. 
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• options validvarname=any;
• libname mdadat XLSX 

'/folders/myfolders/MDA/MDA2.XLSX';
• proc mixed data=mdadat.sheet1 covtest;
• class schoolnr;
• model lang_post = IQ_verb Iqmean /s;
• random Int IQ_verb / type=un sub=schoolnr s;
• repeated / type =cs subject=schoolnr r;
• run;

Coding to run random slope model
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• Figure 5.2 presents a sample of 15 regression lines, 
randomly chosen according to the model of Table 5.1.

• Should the value of 0.195 for the random slope variance 
be considered to be high?

• The slope standard deviation is 0.195 = 0.44, and the 
average slope is 𝛾10 = 2.48
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• The values of average slope ± two standard deviations 
range from 1.60 to 3.36.

• This implies that the effect of IQ is clearly positive in all 
classes, but high effects of IQ are more than twice as large 
as low effects.

• This may indeed be considered an important difference.
• (as indicated above, “high” and “low” are respectively 

understood here as those value occurring in classes with 
the top 2.5% and the bottom 2.5% of the class-dependent 
effects)  
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• The correlation between random slope and random 
intercept is −0.83

8.88(0.195)
= −0.63

• Recall that all variables are centered (have zero mean), so 
that the intercept corresponds to the language test score 
for a pupil with average intelligence in a class with 
average mean intelligence (grand mean). 

Interpretation of Intercept-slope covariance
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• The negative correlation between slope and intercept 
means that classes with a higher performance for a 
pupil of average intelligence have a lower within-class 
effect of intelligence (𝑈1𝑗 is deviational variable)

• Thus, the higher average performance tends to be 
achieved more by higher language scores of the less 
intelligent, than by higher scores of the more 
intelligence students.
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• To investigate how the contribution of classrooms to 
students’ performance depends on IQ, consider the 
equation implied by the parameter estimates:

• 𝑌𝑖𝑗 = 41.13 + 2.4801𝐼𝑄𝑖𝑗 + 1.029𝐼𝑄.𝑗 + 𝑈𝑜𝑗 + 𝑈1𝑗𝐼𝑄𝑖𝑗 + 𝑅𝑖𝑗

• Recall from Example 4.2 that the standard deviation of the 
IQ score is about 2, and the mean is 0. 
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• Hence, students with an IQ among the bottom few 
percent or the top few percent have IQ scores of about 
± 4

• Substituting these values in the contribution of the 
random effects gives 𝑈𝑜𝑗 ± 4𝑈1𝑗 .

• It follows from equations (5.5) and (5.6) that for 
students with 𝐼𝑄 ± 4, we have 

• 𝑣𝑎𝑟 𝑌𝑖𝑗ห𝐼𝑄𝑖𝑗 = −4 = 8.88 + 2𝑥 −0.835 𝑥 −4 +

−4 2𝑥0.195 + 39.69 = 58.37
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• 𝑐𝑜𝑣 𝑌𝑖𝑗 , 𝑌𝑖′𝑗ห𝐼𝑄𝑖𝑗 = −4, 𝐼𝑄𝑖′𝑗 = 4 = 8.88 − 16𝑥0.195 =

5.76

• 𝑣𝑎𝑟 𝑌𝑖𝑗ห𝐼𝑄𝑖𝑗 = 4 = 8.88 − 8𝑥0.835 + 16𝑥0.195 + 39.69 =

45.01

• And therefore, 

• 𝑃 𝑌𝑖𝑗 , 𝑌𝑖′𝑗ห𝐼𝑄𝑖𝑗 = −4, 𝐼𝑄𝑖′𝑗 = 4 =
5.76

58.37(45.01)
= 0.11

Slide <#> of 100



SLIDE 43AQ801-3-M Multilevel Data Analysis Hierarchical Linear Model

• Hence, the language test scores of the most intelligent 
and the least intelligent students in the same class are 
positively correlated over the population of classes: 
classes that have relatively good results for the less 
able tend to have relatively good results for the more 
able students.

• This positive correlation corresponds to the result that 
the value of IQ for which the variance given by (5.5) is 
minimal, is outside the range from -4 to +4.
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• For the estimates in Table 5.1, this variance is (with some 
rounding) 

• 𝑉𝑎𝑟 𝑌𝑖𝑗ห𝐼𝑄𝑖𝑗 = 𝑥 = 8.88 − 1.67 + 0.195𝑥2 + 𝜎2

• Taking the derivative of this function of x equating it to 0 
yields that the variance is minimal for 𝑥 =

1.67

0.39
= 4.3, just 

outside the IQ range from -4 to +4.  
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• This again implies that the classes tend mostly to perform 
either higher, or lower, over the entire range of IQ.

• This is illustrated also by Figure 5.2 (which, however, also 
contains some regression lines that cross each other 
within the range of IQ, illustrating that the random nature 
of these regression lines will lead to exceptions to this 
pattern)
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• The aim of regression analysis is to explain variability in 
the outcome (i.e. dependent) variable.

• Explanation is understood here in a quite limited way – as 
being able to predict the value of the dependent variable 
from knowledge of the values of the explanatory variables.   

Explanation of random intercepts and slopes
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• The unexplained variability in single-level multiple 
regression analysis is just the variance of the residual 
term.

• Variability in multilevel data, however, has more 
complicated structure.

• This is related to the fact, that several populations are 
involved in multilevel modeling: one population for each 
level.
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• Explaining variability in a multilevel structure can be 
achieved by explaining variability between individuals but 
also by explaining variability between groups; if there are 
random slopes as well as random intercepts, at the group 
level one could try to explain the variability of slopes as 
well as intercepts.
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• In the model defined by (5.1) – (5.3), some variability in Y 
is explained by the regression on X, that is, by the term 
𝛾10𝑥𝑖𝑗; the random coefficients 𝑈0𝑗, 𝑈1𝑗 and 𝑅𝑖𝑗 each 
express different parts of the unexplained variability.
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• 𝜎2 = 𝑣𝑎𝑟(𝑅𝑖𝑗) is the residual variance, which can be 
diminished by including other level-one variables.

• Since group compositions with respect to level-one 
variables can differ from group to group, inclusion of 
such variables may also diminish residual variance at the 
group level.  
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• 𝑈0𝑗 and 𝑈1𝑗 are not directly observed, i.e. latent variables.
• To reduce the unexplained variability associated with the 

above 2 terms, just to expand equations (5.2) by predicting 
the group dependent regression coefficients 𝛽0𝑗 and 𝛽1𝑗
from level-two variables Z.  
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• This leads to regression formulas for 𝛽0𝑗 and 𝛽1𝑗 on the 
variable Z given by 

• 𝛽0𝑗 = 𝛾00 + 𝛾01𝑧𝑗 + 𝑈0𝑗 -------(5.7)
• 𝛽1𝑗 = 𝛾10 + 𝛾11𝑧𝑗 + 𝑈1𝑗 -------(5.8)
• The 𝛽𝑠 are treated as dependent variables in the 

regression models.
• These are “latent regressions” because 𝛽𝑠 cannot be 

observed without error.
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• Equation (5.7) is called an intercepts as outcomes model.
• Equation (5.8) is called a slope as outcomes model.
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• Under the hierarchical linear model (HLM), slopes may also 
be random.

• The relation between explanatory and dependent variables 
can differ between groups in more ways.
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Question and Answer Session
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• Testing and Model Specification

What we will cover next
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