

CT106-3-M-BIA - Building IoT Applications CT127-3-M-ODL - BIA - Building IoT Applications

Topic 8 - IoT Security & Privacy

At the end of this topic, you should be able to:

- Articulate the reasons why security is crucial in IoT deployments.
- Comprehend the principles of securing IoT networks.
- Explore the significance of managing updates in IoT security.
- Understand the defence-in-depth strategy for securing IoT applications.
- Apply security principles to real-world IoT scenarios.

Contents & Structure

- Security by design
- Cloud Processing and Storage
- Securing the network
- Manage secure updates
- Security is important
- Defence-in-Depth Strategy

Examples of security issues

Door locks

- cars
- house

House appliances

- burn
- used as network bots

Medical devices

harm people

Public utilities

- power grid
- water network

https://www.pubnub.com/blog/2015-05-04-10-challenges-securing-iot-communications-iot-security/

Security types

SECURITY BY DESIGN

Theoretically proven

Usually open solution

Tested and reviewed by a large number of users

Trust the users

SECURITY BY OBSCURITY

Closed box

No one knows what is inside

If hacked, all the systems fail

How is it updates

Trust the enterprise that designed it

Securing a device

Local Security

Network Security

Software

Hardware

Change the default password

Raspberry Pi

pi/raspberry

BeagleBone

debian/temppwd

Mirai Net

Rent devices for DDoS

Distribute devices with a random default password

Disable unused services

SSH

login access

X Server

- UI, unless you have a display
- default login

Avahii

device discovery (multicast)

SMB (Samba)

WannaCry, used SMB 1

If you don't need it, stop it!

Disable administration over the air

Avoid self-written protocols

You are the the only one using it

No one tested it

Is it theoretically secure?

Firewalls might stop it

Use secure protocols

HTTPS

- Authenticates the server
- Encrypted communication

MQTT/SSL

Encrypted MQTT

XMPP

- Secure messages exchange protocol
- Authenticates servers between each other

Devices

- Computers
- Microcontrollers

Read before implementation

Read about security issues in the field

Study what experts in the field say

Understand the security problems

What should you use?

The right hardware for the right job

Use hardware that is able to secure the network

Follow the IoT stack

Microcontrollers and Computers

• Simple

systems Control

hardware Low

speeds Small

memory

- 2 KB
- RSA key might be is 2KB
- Run single software
- RTOS
- Local network only

Full CPUs

High speeds

Large memory

Is able to use security

Run OS

Linux OS

Local network and Internet

Supported Software

Raspberry Pi

CHIP

Arduino YUN

Banana Pi

BeagleBone

Arduino TIAN

UDOO

Upstream changes

If you change software, push it upstream

For every software update, you have to port your software for it

Use open libraries

If the protocol is used, someone wrote a library

Use a library that is actively maintained

Follow security updates for the library

Sure you want to use it?

This is all right to use

How do you update the device?

Your software will have update

- features
- Security

OS

dual partition

Applications

- snap
- Google Store (Android Things)

Trusted software

Digitally sign the software

Secure boot

- hardware support here
- additional hardware

Secure software

- digitally signed
- Verified before install

Defence-in-depth involves implementing security measures at various IoT levels, including the device, network, and application layers. It involves implementing multiple layers of security measures to protect IoT devices and networks that involve:

- **Device-level security:** This layer focuses on securing individual IoT devices. It includes measures such as strong authentication mechanisms, secure boot, tamper-proofing, and device-level encryption. By implementing these measures, the device itself is protected from unauthorized access and tampering.
- Network-level security: This layer focuses on securing the communication between IoT devices and the
 network infrastructure. It involves implementing secure communication protocols, such as Transport
 Layer Security (TLS) or Datagram Transport Layer Security (DTLS), to encrypt data transmission.
 Additionally, network-level security measures include network segmentation, firewalls, intrusion
 detection and prevention systems, and virtual private networks (VPNs) to protect against unauthorized
 access and network-based attacks.

- **Application-level security:** This layer focuses on securing the applications and services running on IoT devices. It involves implementing secure coding practices, input validation, and access controls to prevent common vulnerabilities, such as buffer overflows and injection attacks. Application-level security measures also include regular patching and updates to address known vulnerabilities.
- **Data security and privacy:** Defense-in-depth also emphasizes protecting the sensitive data collected and transmitted by IoT devices. This involves implementing encryption techniques, access controls, and data anonymization methods to ensure data confidentiality and integrity. Additionally, compliance with privacy regulations and secure data storage practices are essential.

By implementing multiple layers of security measures, defence-in-depth ensures that even if one layer is breached, there are additional layers in place to mitigate the risks and protect the IoT ecosystem. It creates a more robust and resilient security posture by reducing the likelihood of successful attacks and minimizing the potential impact of a security breach.

- What are the challenges and vulnerabilities associated with securing IoT devices? Explain how these challenges differ from traditional computing systems.
- Discuss the concept of defence-in-depth in the context of IoT security. How does it involve implementing multiple layers of security measures to protect IoT devices and networks?
- Discuss the key aspects of network security, such as encryption, authentication, and access control, in the context of IoT.
- Explain the importance of secure communication protocols in IoT. Discuss the role
 of protocols like Transport Layer Security (TLS) and Datagram Transport Layer
 Security (DTLS) in ensuring secure data transmission.

In Class

Preparation for Class